精英家教网 > 高中数学 > 题目详情
平面向量
a
=(3,-4),
b
=(2,x),
c
=(2,y)
,已知
a
b
a
c
,求
b
c
的坐标及
b
c
夹角.
分析:
a
b
a
c
,及平面向量
a
=(3,,-4),
b
=(2,x),
c
=(2,y)
,构造方程组,解答出x,y的值,再根据cosθ=
b
c
|
b
||
c
|
,我们易得向量
b
c
夹角的余弦值,进而得到向量
b
c
夹角.
解答:解:由
a
b

3x+8=0?x=-
8
3
(3分)
a
c

6-4y=0?y=
3
2
(6分)
b
=(2,-
8
3
)
c
=(2,
3
2
)
(8分)
b
c
的夹角为θ,
cosθ=
b
c
|
b
||
c
|
=
4-4
|
b
||
c
|
=0
(10分)
又0°≤θ≤180°(11分)
∴θ=90°(12分)
点评:本题考查的知识点是数量积表示两个向量的夹角,平行向量与共线向量,数量积判断两个平面向量的垂直关系,其中根据
a
b
a
c
,构造方程组,解答出x,y的值,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)求证:
a
b

(2)设
=
+(x-3)
=-y
+x
(其中x≠0),若
,试求函数关系式y=f(x),并解不等式f(x)>7.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
3
2
)
.若存在不同时为零的实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
,且
x
y

(1)试求函数关系式k=f(t)
(2)求使f(t)>0的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1)
b
=(
1
2
3
2
)

(1)证明:
a
b

(2)若存在不同时为零的实数k和g,使
x
=
a
+(g2-3)
b
y
=-k
a
+g
b
,且
x
y
,试求函数关系式k=f(g);
(3)椐(2)的结论,讨论关于g的方程f(g)-k=0的解的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面向量
a
=(
3
,-1),
b
=(
1
2
3
2
)
,若存在实数m(m≠0)和角θ,其中θ∈(-
π
2
π
2
)
,使向量
c
=
a
+(tan2θ-3)
b
d
=-m
a
+
b
•tanθ
,且
c
d

(1)求m=f(θ)的关系式;
(2)若θ∈[-
π
6
π
3
]
,求f(θ)的最小值,并求出此时的θ值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
={3,y}
b
={x,-3}
,且
a
+
b
={1,1},则x、y的值分别为…(  )

查看答案和解析>>

同步练习册答案