精英家教网 > 高中数学 > 题目详情

【题目】(1)已知,证明:

(2)已知 ,求证: .

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)利用分析法, 要证只要证只要证只需证明即可该式显然成立从而可得结论;(2)本题是一个全部性问题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑采用反证法,假设,不全是正数,这时需要逐个讨论不是正数的情形,但注意到条件的特点(任意交换的位置不改变命题的条件),我们只要讨论其中一个数〔例如,其他两个数〔例如〕与这种情形类似.

试题解析:(1)证明 要证只要证只要证即证恒成立成立.

(2)假设不全是正数,即其至少有一个不是正数不妨先设,下面分两种情况讨论如果矛盾 不可能,如果那么由可得 于是

这和已知相矛盾,因此 也不可能,综上所述 同理可证,所以原命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆E: +y2=1(a>1)的右焦点为F,右顶点为A,已知 ,其中O为原点,e为椭圆的离心率.
(Ⅰ)求a的值;
(Ⅱ)动直线l过点N(﹣2,0),l与椭圆E交于P,Q两点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0)的导函数y=f′(x)的两个零点为0和3.
(1)求函数f(x)的单调递增区间;
(2)若函数f(x)的极大值为 ,求函数f(x)在区间[0,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成 六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数内的频率,并补全这个频率分布直方图;

(2)从频率分布直方图中,估计本次考试成绩的中位数;

(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处都取得极值.

(1)求的值及函数的单调区间;

(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中.己知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)直线l与曲线C相交于A、B两点,求∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足.

1)若的定义域为,且对定义域内所有都成立,求

2)若的定义域为时,求的值域;

3)若的定义域为,设函数,当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)

(1)三名女生不能相邻,有多少种不同的站法?

(2)四名男生相邻有多少种不同的排法?

(3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?

(4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期为π.
(1)求函数f(x)的单调增区间;
(2)将函数f(x)的图象向左平移 个单位长度,再向上平移1个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在 上的最值.

查看答案和解析>>

同步练习册答案