【题目】冬季昼夜温差大小与某反季节大豆新品种发芽多少之间有关系,某农科所对此关系进行了调查分析,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天100颗种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(参考公式: , )
【答案】(Ⅰ);(Ⅱ) ;(Ⅲ)可靠.
【解析】试题分析:选取的2组数据恰好是不相邻2天数据恰好与选取的2组数据恰好是相邻2天数据为对立事件,每种情况都是等可能出现的,利用等可能事件的概率公式求出概率,
试题解析:第二步利用数据和公式求出回归直线方程,第三步分别计算, 时的预报数据及进行检验误差均不超过2,认为得到的线性回归方程可靠.
试题解析:
(Ⅰ)设抽到不相邻两组数据为事件,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以.
(Ⅱ)由数据,求得.由公式,求得, .所以关于的线性回归方程为.
(Ⅲ)当时, ,|22-23|<2; 同样,当时, ,|17-16|<2. 所以,该研究所得到的线性回归方程是可靠的.
科目:高中数学 来源: 题型:
【题目】某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如下列联表:
做不到科学用眼 | 能做到科学用眼 | 合计 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合计 | 75 | 25 | 100 |
(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数,试求随机变量的分布列和数学期望;
(2)若在犯错误的概率不超过的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的的值应为多少?请说明理由.
附:独立性检验统计量,其中.
独立性检验临界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校计划面向高一年级1240名学生开设校本选修课程,为确保工作的顺利实施,按性别进行分层抽样,现抽取124名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有65人.在这124名学生中选修社会科学类的男生有22人、女生有40人.
(1)根据以上数据完成下列列联表;
(2)判断能否有99.9%的把握认为科类的选修与性别有关?
附: ,其中
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线的极坐标方程为,直线的参数方程为
(为参数, 为直线的倾斜角).
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线有唯一的公共点,求角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:①定义在上的函数满足,则一定不是上的减函数;
②用反证法证明命题“若实数,满足,则都为0”时,“假设命题的结论不成立”的叙述是“假设都不为0”;
③把函数的图象向右平移个单位长度,所得到的图象的函数解析式为;
④“”是“函数为奇函数”的充分不必要条件.
其中所有正确命题的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图5所示,已知四棱锥中,底面为矩形, 底面, ,
, 为的中点.
⑴指出平面与的交点所在位置,并给出理由;
⑵求平面将四棱锥分成上下两部分的体积比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com