精英家教网 > 高中数学 > 题目详情
若实数m>n,正数a>b,A=(an+bnm,B=(am+bmn,则(  )
A、A>B
B、A<B
C、A与B的大小关系由m与n的差决定
D、A与B的大小关系由a与b的差决定
考点:不等关系与不等式
专题:不等式的解法及应用
分析:变形A=[an(1+(
b
a
n]m=anm[(1+(
b
a
n]m,同理可得B=amn[(1+(
b
a
m]n,由a>b,m>n,利用指数函数的单调性可得(
b
a
n>(
b
a
m,即可得出.
解答: 解:A=(an+bnm=[an(1+(
b
a
n]m=anm[(1+(
b
a
n]m
B=(am+bmn=[am(1+(
b
a
m]n=amn[(1+(
b
a
m]n
∵a>b,m>n,
∴(
b
a
n>(
b
a
m
∴A>B.
故选:A.
点评:本题考查了指数函数的单调性,考查了变形能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={x∈R|0<x<2},N={x∈R|x>1},则M∩(∁UN)=(  )
A、[1,2)
B、(1,2)
C、(0,1]
D、[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
1+ax
1-x
(a>0)为奇函数,函数g(x)=
2
x2
+b(b∈R)
(1)求函数f(x)的定义域;
(2)当x∈[
1
3
1
2
]时,关于x的不等式f(1-x)≤lgg(x)有解,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log9x=(log3y)2
(1)若x=3y,求x,y的值;
(2)当x,y为何值时,
x
y
取得最小值?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4),若λ为实数,(
b
a
)⊥
c
,则λ的值为(  )
A、-
3
11
B、-
11
3
C、
1
2
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<|
a
|≤2,函数f(x)=cos2x-|
a
|sinx-|
b
|的最大值为0,最小值为-4,且
a
b
的夹角为45°,求|
a
+
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:对于给定的q∈N*及映射f:A→B,B⊆N*,若集合C⊆A,且C中所有元素在B中对应的元素之和大于或等于q,则称C为集合A的好子集.
①对于q=3,A={a,b,c,d},映射f:x→1,x∈A,那么集合A的所有好子集的个数为
 

②对于给定的q,A={1,2,3,4,5,6,π},映射f:A→B的对应关系如下表:
x123456π
f(x)11111yz
若当且仅当C中含有π和至少A中3个整数或者C中至少含有A中5个整数时,C为集合A的好子集,则所有满足条件的数组(q,y,z)为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在长16cm的线段AB上任取一点M,并以线段AM为边作正方形,则求这个正方形的面积介于25cm2与81cm2之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

展开(a+b+c)6,合并同类项后,含ab2c3项的系数是
 

查看答案和解析>>

同步练习册答案