精英家教网 > 高中数学 > 题目详情

【题目】设m,n∈N,f(x)=(1+x)m+(1+x)n
(1)当m=n=5时,若 ,求a0+a2+a4的值;
(2)f(x)展开式中x的系数是9,当m,n变化时,求x2系数的最小值.

【答案】
(1)解:当m=n=5时,f(x)=2(1+x)5,令x=0时,f(0)=a5+a4+…+a1+a0=2,

令x=2时,f(0)=﹣a5+a4+…﹣a1+a0=2×35

相加可得:a0+a2+a4= =244


(2)解:由题意可得: =m+n=9.

x2系数= = = = = +

又m,n∈N,∴m=4或5,其最小值为16.

时,x2系数的最小值为16


【解析】(1)当m=n=5时,f(x)=2(1+x)5 , 令x=0时,x=2时,代入相加即可得出.(2)由题意可得: =m+n=9.x2系数= = = + .利用二次函数的单调性即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,过椭圆 右焦点 的直线交椭圆两点 , 的中点,且 的斜率为 .

(1)求椭圆的标准方程;

(2)设过点 的直线 (不与坐标轴垂直)与椭圆交于 两点,问:在 轴上是否存在定点 ,使得 为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx+ cosx.求:
(1)f(x)图象的对称中心的坐标;
(2)f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为参数.

(1)当时,求函数处的切线方程;

(2)讨论函数极值点的个数,并说明理由;

(3)若对任意 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为,右焦点为,点是椭圆上异于左、右顶点的一点.

(1)求椭圆的方程;

(2)若直线与直线交于点,线段的中点为,证明:点关于直线的对称点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了盒该产品,以(单位:盒, )表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量的中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个分段函数可利用函数 来表示,例如要表示一个分段函数 ,可将函数g(x)表示为g(x)=xS(x﹣2)+(﹣x)S(2﹣x).现有一个函数f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函数f(x)在区间[0,4]上的最大值与最小值;
(2)若关于x的不等式f(x)≤kx对任意x∈[0,+∞)都成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如下表

广告费用x(万元)

4

2

3

5

销售额y(万元)

49

26

39

54

根据上表可得回归方程 = x+ 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.65.5万元
C.67.7万元
D.72.0万元

查看答案和解析>>

同步练习册答案