精英家教网 > 高中数学 > 题目详情
若函数f(x)为定义域D上单调函数,且存在区间[a,b]D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间,
(1)已知是[0,+∞)上的正函数,求f(x)的等域区间;
(2)试探究是否存在实数m,使得函数g(x)=x2+m是(-∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由。
解:(1)因为是[0,+∞)上的正函数,且在[0,+∞)上单调递增,
所以当x∈[a,b]时,
解得a=0,b=1,
故函数f(x)的“等域区间”为[0,1];
(2)因为函数是(-∞,0)上的减函数,
所以当x∈[a,b]时,
两式相减得,即b=-(a+1),
代入
由a<b<0,且b=-(a+1)得
故关于a的方程内有实数解,

,解得
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=lg(x+1),求f(x)的表达式,并画出示意图.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f (x)为定义在区间[-6,6]上的偶函数,且f(3)>f(1),则下列各式一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为定义在[0,+∞)上的增函数,定义在R上的函数g(x)满足g(x)=f(|x|),则不等式g(
2x
)>g(1)
的解集为
(-2,0)∪(0,2)
(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=2x
(1)求f(x)的表达式;
(2)在所给的坐标系中直接画出函数f(x)图象.(不必列表)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台二模)若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=2x-1-3,则不等式f(x)>1的解集为
(-2,0)∪(3,+∞)
(-2,0)∪(3,+∞)

查看答案和解析>>

同步练习册答案