精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,过抛物线C的焦点F作互相垂直的两条直线ABCD,与抛物线C分别相交于ABCD,点ACx轴上方.

1)若直线AB的倾斜角为,求的值;

2)设的面积之和为S,求S的最小值.

【答案】128

【解析】

1)先求出直线直线AB的方程为,与抛物线方程联立,根据韦达定理和抛物线的性质即可求出;

2)设直线AB的方程为,则CD,分别根据韦达定理和基本不等式即可求出S的最小值.

解:(1)直线AB的方程为,设

,消y可得

.

2)由已知条件得直线AB的斜率存在且不为0,设直线AB的方程为,则CD

,消y可得

,消y可得

1

当且仅当时等号成立,

S的最小值为8.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金、专业二等奖学金及专业三等奖学金,且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.

(Ⅰ)求这名学生中获得专业三等奖学金的人数;

(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种出口产品的关税税率,市场价格(单位:千元)与市场供应量(单位:万件)之间近似满足关系式:,其中均为常数.当关税税率为时,若市场价格为5千元,则市场供应量约为1万件;当关税税率为时,若市场价格为7千元,则市场供应量约为2万件.

(1)试确定的值;

(2)市场需求量(单位:万件)与市场价格近似满足关系式:.当时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面分别为的中点,点在线段.

1)若的中点,求证:平面平面;

2)求证:平面;

3)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形中,,点为线段上一动点,现将沿折起,使点在面内的射影在直线上,当点运动到,则点所形成轨迹的长度为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,已知平面QBC与直线PA均垂直于所在平面,且PA=AB=AC

)求证:PA∥平面QBC

)若,求二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中,,侧面底面的中点,.

(Ⅰ)求证:为直角三角形;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知曲线C1x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线ρ(2cosθ-sinθ)=6.

)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的2倍后得到曲线C2,试写出直线的直角坐标方程和曲线C2的参数方程.

)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示:

(I)求的解析式及对称中心坐标;

(Ⅱ)将的图象向右平移个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数的图象,求函数上的单调区间及最值.

查看答案和解析>>

同步练习册答案