精英家教网 > 高中数学 > 题目详情

.当α∈{-1,,1,3}时,幂函数y=xα的图像不可能经过__________象限.

 

【答案】

第二、第四

【解析】

试题分析:因为幂函数y=x-1,y=x,y=x3,y=的图象在第一或第三象限,所以,满足条件的幂函数y=xα的图像不可能经过第二、第四象限.

考点:幂函数的图象.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,a2=
2
,Sn是数列{an}的前n项和.当n≥2且n∈N*时,Sn+1(Sn+1-2Sn)+(2Sn-Sn-1)Sn-1=1,令bn=
a
4
n
(
1
a
4
1
+
1
a
4
2
+
1
a
4
3
+…+
1
a
4
n-1
)

(1)求数列{an}的通项公式;试用n和bn表示bn+1
(2)若b1=1,n∈N*,证明:(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)>
29
9
-
2(n+1)
n(n+2)

(3)当n∈N*时,证明
a
2
1
C
0
n
2
+
a
2
2
C
1
n
22
+
a
2
3
C
2
n
23
+…+
a
2
i+1
C
1
n
2i+1
+…+
a
2
n+1
C
n
n
2n+1
3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意大于或等于2的正整数都成立的不等式:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,当n=k+1时其左端与n=k时其右端所相差的式子是(其中k∈Z,k≥2)(  )
A、
1
2k+1
+
1
2(k+1)
B、
1
2k+1
+
1
2(k+1)
-
1
k+1
C、
1
2(k+1)
D、
1
2k+1
+
1
2(k+1)
-
1
k
-
1
k+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)和数列{an}满足下列条件:a1=a≠0,a2≠a1,当n∈N*时,an+1=f(an),且存在非零常数k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若数列{an}是等差数列,求k的值;
(2)求证:数列{an}为等比数列的充要条件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),数列{bn}的前n项是Sn,对于给定常数m,若
S(m+1)nSmn
的值是一个与n无关的量,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做2)已知当a≠b及n∈N*时有公式:an+an-1b+…+arbn-r+…+abn-1+bn=
bn+1-an+1
b-a

(1)利用上述公式证明:对于0<a<b,有(n+1)(b-a ) an<b n+1-an+1<(n+1)(b-a) bn
(2)证明:对一切n∈N*,有(1+
1
n
n<(1+
1
n+1
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明“42n-1+3n+1(n∈N)能被13整除”的第二步中,当n=k+1时为了使用归纳假设,对42k+1+3k+2变形正确的是(    )

A.16(42k-1+3k+1)-13×3k+1                    B.4×42k+9×3k

C.(42k-1+3k+1)+15×42k-1+2×3k+1               D.3(42k-1+3k+1)-13×42k-1

查看答案和解析>>

同步练习册答案