精英家教网 > 高中数学 > 题目详情
14.若方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{a}$=1表示焦点在y轴上的椭圆,则实数a的取值范围是(-1,0).

分析 根据焦点在y轴的椭圆方程的一般形式,建立关于a的不等式组,解之即可得到实数a的取值范围.

解答 解:∵方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{a}$=1表示焦点在y轴上的椭圆,
∴-a>a2>0,
解得:a∈(-1,0),
故答案为:(-1,0)

点评 本题给出含有字母参数的椭圆方程,在其焦点在y轴的情况下求参数的范围.着重考查了椭圆的标准方程与简单几何性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.过椭圆$\frac{{x}^{2}}{4}$+y2=1的右焦点做互相垂直的两直线与椭圆分别交于AB,CD.
(1)求证$\frac{1}{|AB|}$+$\frac{1}{|CD|}$为定值;
(2)求四边形ACBD面积的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=ln(2x+1)+$\frac{{x}^{2}+x}{8}$,则曲线在点(x,y)处切线的倾斜角的范围是[$\frac{π}{4}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-$\frac{1}{6}$x3+x2-aex+2.
(1)若a=1,求曲线y=f(x)在x=0处的切线方程;
(2)设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x).若在(a,b)上,f″(x)>0,则称函数在上为“凹函数”.若函数f(x)=-$\frac{1}{6}$x3+x2-aex+2是R上的“凹函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某车间在两天内,每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部每天要在生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.
(I)求两天全部通过检查的概率;
(Ⅱ)若厂内对该车间生产的产品质量采用奖惩制度,两天全不通过检查罚300元,通过1天,2天分别奖300元、900元.求该车间在这两天内得到奖金X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三个顶点分别是A(0,1),B(3,0),C(5,2),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.水平放置的圆柱形排水管道的截面半径是0.5米,水面宽0.8米,求水面高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为缓解高三同学的紧张情绪,某校举行高三跳绳友谊赛,高三(一)班的3个同学分别与(二)班的3个同学对阵已知每一场比赛(一)班同学胜(二)班同学的概率分别为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{4}$.
(1)求两个班级的同学都至少胜一场的概率;
(2)求(一)班获胜场数X的分布列和数学期望值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一条直线经过点P(2,3)
(1)若此直线是一条入射光线,射在直线l:x+y+1=0,反射后经过点Q(1,1),求反射光线所在直线的方程;
(2)若直线与x轴,直线x=-1围成的三角形的面积是18,且不过第三象限,求直线的方程.

查看答案和解析>>

同步练习册答案