精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱ABC—A1B1C1中,侧棱与底面垂直,∠BAC90°,ABAC=AA12,点M,N分別为A1B和B1C1的中点.

(1)求异面直线A1B与NC所成角的余弦值;

(2)求A1B与平面NMC所成角的正弦值.

【答案】(1)2

【解析】

(1)以点A为原点,分别以ABACAA1x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出异面直线A1BNC所成角的余弦值;

(2)求出平面MNC的一个法向量,利用向量法能求出A1B与平面NMC所成角的正弦值.

(1)证明:以点为坐标原点,分别以直线轴,轴,轴建立空间直角坐标系,于是.

设异面直线所成角为,则

.

∴异面直线所成角的余弦值为.

(2)

是平面的一个法向量,则

,取

设向量和向量的夹角为

与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,分别为椭圆的左、右焦点.动直线过点,且与椭圆相交于两点(直线轴不重合).

(1)若点的坐标为,求点坐标;

(2)点,设直线的斜率分别为,求证:

(3)求面积最大时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,平面是线段的中点,.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,集合.

(1)若“”是“”的必要条件,求实数的取值范围;

(2)若中只有一个整数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n是两条不同直线,是三个不同平面,给出下列四个命题:①若m⊥n,则m//n;②若////m,则m⊥;③若m//n//,则m//n;④,则//.其中正确命题的序号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极小值.

(1)求实数的值;

(2)设,其导函数为,若的图象交轴于两点,设线段的中点为,试问是否为的根?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是边长为6的正方形的四棱锥P--ABCD中,点P在底面的射影H为正方形ABCD的中心,异面直线PB与AD所成角的正切值为,则四棱锥P--ABCD的内切球与外接球的半径之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为2的正三角形ABC中,点D,E,G分别是边AB,AC,BC的中点,连接DE,连接AGDE于点现将沿DE折叠至的位置,使得平面平面BCED,连接A1G,EG.

证明:DE∥平面A1BC

求点B到平面A1EG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足,且当时,,则方程上所有根的和为(

A.B.C.D.

查看答案和解析>>

同步练习册答案