精英家教网 > 高中数学 > 题目详情

在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为

(1)求棱的长;
(2)若的中点为,求异面直线所成角的大小(结果用反三角函数值表示).

(1)3(2)

解析试题分析:解:(1)设,由题设
,即,解得
的长为
(2)因为在长方体中//,所以即为异面直线所成的角(或其补角).
在△中,计算可得,则的余弦值为
故异面直线所成角的大小为
考点:异面直线所成的角
点评:求异面直线所成的角,可通过转化为共面直线所成的角来求解,有时也可通过向量来求。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,四条侧棱长均相等.

(1)求证:平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知长方形ABCD中,AB=2,A1,B1分别是AD,BC边上的点,且AA1=BB1="1," E,F分别为B1D与AB的中点. 把长方形ABCD沿直线折成直角二面角,且.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱中,平面,底面是边长为1的正方形,侧棱


(Ⅰ)证明:
(Ⅱ)若棱上存在一点,使得
当二面角的大小为时,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形, ,分别为的中点,且.

(1)求证: ;
(2)求异面直线所成的角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个直三棱柱(以A1B1C1为底面)被一平面
所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且设点O是AB的中点。

(1)证明:OC∥平面A1B1C1
(2)求异面直线OC与AlBl所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=

(1)当时,求证:AO⊥平面BCD;
(2)当二面角的大小为时,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O为AB的中点.

(1)求证:OC⊥DF;
(2)求平面DEF与平面ABC相交所成锐二面角的大小;
(3)求多面体ABC—FDE的体积V.

查看答案和解析>>

同步练习册答案