精英家教网 > 高中数学 > 题目详情
18.证明不等式ln(1+$\frac{1}{x}$)>$\frac{1}{1+x}$(0<x<+∞)

分析 利用换元法,设t=1+$\frac{1}{x}$,把原不等式化为lnt>1-$\frac{1}{t}$,t>1;
再设函数f(t)=ln t-(1-$\frac{1}{t}$),t>1,利用导数判断f(t)的单调性,从而证明不等式成立.

解答 证明:令t=1+$\frac{1}{x}$,x=$\frac{1}{t-1}$,t>1,
∴$\frac{1}{1+x}$=$\frac{1}{1+\frac{1}{t-1}}$=$\frac{t-1}{t}$=1-$\frac{1}{t}$,
原不等式化为lnt>1-$\frac{1}{t}$,t>1;
设f(t)=ln t-(1-$\frac{1}{t}$),t>1,
则f′(t)=$\frac{1}{t}$-$\frac{1}{{t}^{2}}$=$\frac{t-1}{{t}^{2}}$>0,
∴f(t)在(1,+∞)上是单调增函数,
∴f(t)>f(1)=0,
∴ln t>1-$\frac{1}{t}$;
即 ln(1+$\frac{1}{x}$)>$\frac{1}{1+x}$(0<x<+∞).

点评 本题考查了利用导数判断函数的单调性以及利用函数的单调性证明不等式成立的问题,体现了转化、换元的数学思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.tanθ=2,则2sin2θ+sinθcosθ的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.
(1)求证:BE⊥平面DEFG;
(2)求证:BF∥平面ACGD;
(3)求三棱锥A-FBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数f(x)=|lgx|,若正实数a,b满足f(a)=f(b),则a,b满足关系式为ab=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三点A(1,2),B(-6,x),C(-1,4)共线,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若f(x)=3x2+4,且x∈{0,1},则f(x)的值域是(  )
A.{4,7}B.(4,7)C.[4,7]D.{4,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某外语学校英语班有A1、A2两位同学,日语班有B1、B2、B3、B4四位同学,俄语班有C1、C2两位同学共8人报名奥运会志愿者,现从中选出懂英语、日语、俄语的志愿者各1人,组成一个小组.
(1)写出一切可能的结果组成的基本事件空间并求出B4被选中的概率;
(2)求A1和C1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数2-3i(i为虚数单位)的虚部是(  )
A.-2B.2C.-3iD.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有以下四个命题,其中真命题的个数为(  )
①△ABC中,“A>B”是“sinA>sinB”的充要条件;
②若命题p:?x∈R,sinx≤1,则¬p:?x∈R,sinx<1;
③函数y=3sin(2x-$\frac{π}{6}$)+2的单调递减区间是[$\frac{π}{3}$+2kπ,$\frac{5}{6}$π+2kπ](k∈z);
④若函数f(x)=x2+2x+2a与g(x)=|x-1|+|x+a|有相同的最小值,则$\int_1^a{f(x)}dx$=$\frac{28}{3}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案