精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置,并证明,若不存在,请说明理由.
(I)见解析;(II)存在,证明见解析.

试题分析:(I)先根据已知条件证明,那么就有,在根据题中已知边的长度,由勾股定理证明,根据直线与平面垂直的判定定理即可证明;(II)设的中点为, 连结,证明四边形为平行四边形,由直线与平面平行的判定定理可知,平面.
试题解析:(I)∵,∴.
又∵,且

,∴.                             3分
在底面中,∵
,有,∴.
又∵, ∴.                     6分
(II)在上存在中点,使得平面,                 8分
证明如下:设的中点为, 连结,如图所示:

,且.           
由已知
,且,     10分
∴四边形为平行四边形,∴.
平面平面
平面.                                       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形为矩形,平面上的点,且平面.

(1)求三棱锥的体积;
(2)设在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,,点在边上,点在边上,且,垂足为,若将沿折起,使点位于位置,连接得四棱锥

(Ⅰ)求证:
(Ⅱ)若,直线与平面所成角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用一个边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,半径为1的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为异面直线,,则直线(   )
A.与都相交B.至多与中的一条相交
C.与都不相交D.至少与中的一条相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是边长为为正方形的对角线,将绕直线旋转一周后形成的几何体的体积等于             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中, ,点的中点,.

(Ⅰ)求证:∥平面
(Ⅱ)设点在线段上,,且使直线和平面所成的角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱锥的各棱棱长都为,则正四棱锥的外接球的表面积为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案