精英家教网 > 高中数学 > 题目详情

【题目】设函数 对任意 不等式恒成立,则正数的取值范围是__________

【答案】

【解析】分析:当x0时,f(x)=e2x+,利用基本不等式可求f(x)的最小值,对函数g(x)求导,利用导数研究函数的单调性,进而可求g(x)的最大值,问题转化为,可求正数的取值范围

详解:当x0时,f(x)=e2x+≥2

x1(0,+∞)时,函数f()有最小值2e,

g(x)==,

当x1时, 0,则函数g(x)在(0,1)上单调递增,

当x1时, 0,则函数在(1,+∞)上单调递减,

x=1时,函数g(x)有最大值g(1)=e,

则有x1、x2∈(0,+∞),f(x1min=2e>g(x2max=e,

不等式恒成立且k>0,

k1.

故答案为:k≥1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= ,直线y=m与函数f(x)的图象相交于四个不同的点,从小到大,交点横坐标依次记为a,b,c,d,有以下四个结论 ①m∈[3,4)
②abcd∈[0,e4
③a+b+c+d∈
④若关于x的方程f(x)+x=m恰有三个不同实根,则m取值唯一.
则其中正确的结论是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+a(x+lnx),a∈R. (Ⅰ)若当a=﹣1时,求f(x)的单调区间;
(Ⅱ)若f(x)> (e+1)a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.那么在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

1的解析式;

2若存在,使得成立,求的取值范围;

3证明函数的图象在图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】掷2个骰子,至少有一个1点的概率为 (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐、规定:每场知识竞赛前三名的得分都分别为,且);选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列推理正确的是( )

A. 每场比赛第一名得分为4 B. 甲可能有一场比赛获得第二名

C. 乙有四场比赛获得第三名 D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为数列{an}的前n项和,满足Sn=2an-2 (n∈N*)

(1)的值并由此猜想数列{an}的通项公式an

(2)用数学归纳法证明(Ⅰ)中的猜想.

查看答案和解析>>

同步练习册答案