精英家教网 > 高中数学 > 题目详情
已知
m
=(cosx,1),
n
=(2sinx,1),设f(x)=
m
n

(1)求f(x)的最小正周期;
(2)在△ABC中,已知A为锐角,f(
A
2
)=
4
3
,BC=4,AB=3,求sinB的值.
分析:(1)利用向量积表示出f(x),然后根据周期的公式得出答案.
(2)首先求出sinA进而判断A是锐角得出cosA的值,然后根据正弦定理求出sinC,进而根据同角三角函数的基本关系求出cosC,再由两角和与差的正弦公式求出sinB=sin(A+C).
解答:解:(1)∵f(x)=
m
n
=2cosxsinx+1=sin2x+1
∴T=
2

∴f(x)的最小正周期是π
(2)∵f(
A
2
)=sinA+1=
4
3

∴sinA=
1
3

∵A为锐角
∴cosA=
1-sin2A
=
2
2
3

在△ABC中,由正弦定理:
BC
sinA
=
AB
sinC

∴sinC=
AB•sinA
BC
=
1
3
4
=
1
4

∵BC>AB
∴A>C
∴C也锐角  
∴cosC=
1-sin2C
=
15
4

∴sinB=sin(A+C)=sinAcosC+cosAsinC=
1
3
×
15
4
+
2
2
3
×
1
4
15
+2
2
12
点评:本题考查了正弦定理、三角函数周期性的求法以及向量积,解题过程中要注意判断三角函数的符号,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(cosx,sinx),
n
=(cosx,2
3
cosx-sinx),f(x)=
m
n
+|
m
|,x∈(
12
,π].
(Ⅰ)求f(x)的最大值;
(Ⅱ)记△ABC的内角A、B、C的对边分别为a、b、c,若f(B)=-1,a=c=2,求
AB
BC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(sinx+cosx,
3
cosx)
n
=(cosx-sinx,2sinx)
,函数f(x)=
m
n

(Ⅰ)求x∈[-
π
6
π
3
]
时,函数f(x)的取值范围;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C、的对边,且a=
3
,b+c=3,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(cosx,
3
sinx),
n
=(cosx,cosx),设f(x)=
m
n

(1)求函数f(x)的图象的对称轴及其单调递增区间;
(2)当x∈[0,
π
2
]
,求函数f(x)的值域及取得最大值时x的值;
(3)若b、c分别是锐角△ABC的内角B、C的对边,且b•c=
6
-
2
,f(A)=
1
2
,试求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(cosx,2sinx),
n
=(2cosx,-sinx),f(x)=
m
n

(1)求f(-
2009
3
π)的值;
(2)当x∈[0,
π
2
]时,求g(x)=
1
2
f(x)+sin2x的最大值和最小值.

查看答案和解析>>

同步练习册答案