已知抛物线的焦点为,准线与轴的交点为,点在上且,则的面积为
8
【解析】
试题分析:根据抛物线的方程可求得其焦点坐标,和k的坐标,过A作AM⊥准线,根据抛物线的定义可知|AM|=|AF|根据已知条件可知设出A的坐标,利用求得m,然后利用三角形面积公式求得答案. 解:F(2,0)K(-2,0)过A作AM⊥准线,则|AM|=|AF|,∴∴△AFK的高等于|AM|,设A(m2,2 m)(m>0),则△AFK的面积=4×2m?
=4m,又由|,过A作准线的垂线,垂足为P,三角形APK为等腰直角三角形,所以m=∴△AFK的面积=4×2m?=8,故答案为:8
考点:抛物线的简单性质
点评:本题主要考查了抛物线的简单性质.考查了学生对抛物线基础知识的熟练掌握
科目:高中数学 来源:2013-2014学年浙江省高三上学期第三次统练理科数学试卷(解析版) 题型:解答题
已知抛物线的焦点为,准线为,点为抛物线C上的一点,且的外接圆圆心到准线的距离为.
(I)求抛物线C的方程;
(II)若圆F的方程为,过点P作圆F的2条切线分别交轴于点,求面积的最小值时的值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省台州市高三调研考试理数 题型:选择题
已知抛物线的焦点为,关于原点的对称点为过作轴的垂线交抛物线于两点.有下列四个命题:①必为直角三角形;②不一定为直角三角形;③直线必与抛物线相切;④直线不一定与抛物线相切.其中正确的命题是
(A)①③ (B)①④ (C)②③ (D)②④
查看答案和解析>>
科目:高中数学 来源:2010-2011年黑龙江省高二上学期期末考试数学理卷 题型:选择题
已知抛物线的焦点为F,准线为,经过F且斜率为的直线与抛物线在轴上方的部分相交于点A,且AK,垂足为K,则的面积是( )
A 4 B C D 8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com