【题目】如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。
证明:(1)直线EE//平面FCC;
(2)求二面角B-FC-C的余弦值。
【答案】(1)见解析 (2)
【解析】试题分析:(1)以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,求得设平面CC1F的法向量为, ,由得直线EE//平面FCC;
(2)通过建立空间直角坐标系,先求出两个平面的法向量,则两个平面的法向量的夹角即为两平面的二面角或其补角.
试题解析:
解法(1)因为AB=4, BC=CD=2, F是棱AB的中点,
所以BF=BC=CF,△BCF为正三角形, 因为ABCD为
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,
连接DM,则DM⊥AB,所以DM⊥CD,
以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,
,则D(0,0,0),A(,-1,0),F(,1,0),C(0,2,0),
C1(0,2,2),E(,,0),E1(,-1,1),所以
,,
设平面CC1F的法向量为则所以取,则,所以,所以直线EE//平面FCC.
(2),设平面BFC1的法向量为,则所以,取,则,
,,
所以,由图可知二面角B-FC-C为锐角,所以二面角B-FC-C的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知 =(m﹣2) +2 , = +(m+1) ,其中 、 分别为x、y轴正方向单位向量.
(1)若m=2,求 与 的夹角;
(2)若( + )⊥( ﹣ ),求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)= .
(1)证明:a、c、b成等差数列;
(2)求cosC的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且 , ,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则 的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】二次函数f(x)满足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax﹣2 , g(x)=loga|x|(a>0且a≠1),若f(4)g(﹣4)<0,则y=f(x),y=g(x)在同一坐标系内的大致图象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com