精英家教网 > 高中数学 > 题目详情

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系可用v=f(u)表示.

(1)求证:对于任意向量ab及常数m、n,f(ma+nb)=mf(a)+nf(b)恒成立;

(2)设a=(1,1),b=(1,0),求向量f(a)、f(b)的坐标;

(3)求使f(c)=(p,q)(p、q为常数)的向量c的坐标.

答案:
解析:

  解:(1)设a=(a1,a2),b=(b1,b2),则ma+nb=(ma1+nb1,ma2+nb2).

  ∴f(ma+nb)=(ma2+nb2,2ma2+2nb2-ma1-nb1),

  mf(a)+nf(b)=m(a2,2a2-a1)+n(b2,2b2-b1)

  =(ma2+nb2,2ma2+2nb2-ma1-nb1).

  ∴f(ma+nb)=mf(a)+nf(b)恒成立.

  (2)f(a)=(1,2×1-1)=(1,1),f(b)=(0,2×0-1)=(0,-1).

  (3)设c=(x,y),则f(c)=(y,2y-x)=(p,q).

  ∴y=p,2y-x=q.∴x=2p-q,即向量c=(2p-q,p).

  思路分析:本题用到向量的坐标表示,向量的加法、减法、实数与向量的积的坐标运算等知识,代入相应的公式运算即可.


提示:

本题是向量的坐标运算与函数知识相结合的问题,题目的难度并不大,主要考查向量的坐标运算和函数的基础知识,但却充分体现了坐标运算的代数性.为运用题设条件,必须将向量用坐标表示,通过坐标进行计算,从而解决问题.


练习册系列答案
相关习题

科目:高中数学 来源:设计必修四数学人教A版 人教A版 题型:044

已知向量u=(x,y),v=(y,2y-x)的对应关系用v=f(u)来表示.

(1)求证:对于任意向量ab及常数m、n恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)求使f(c)=(p,q)(p、q为常数)的向量c的坐标.

查看答案和解析>>

科目:高中数学 来源:训练必修四数学人教A版 人教A版 题型:044

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系可用vf(u)表示.

(1)证明对于任意向量ab及常数m、n,恒有f(ma+nb)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;

(3)求使f(c)=(3,5)成立的向量c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量u=(xy)与向量v=(y,2yx)的对应关系记作vf(u).

(1)求证:对于任意向量ab及常数mn,恒有f(manb)=mf(a)+nf(b);

(2)若a=(1,1),b=(1,0),用坐标表示f(a)和f(b);

(3)求使f(c)=(pq)(pq为常数)的向量c的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量u=(x,y),v=(y,2y-x)的对应关系用v=f(u)来表示.

(1)证明对于任意向量a,b及常数m,n,恒有f(m a+n b)=mf(a)+nf(b)成立;

(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标.

查看答案和解析>>

同步练习册答案