精英家教网 > 高中数学 > 题目详情
14.已知正数a,b,c满足2a-b+c=0,则$\frac{ac}{{b}^{2}}$的最大值为(  )
A.8B.2C.$\frac{1}{8}$D.$\frac{1}{6}$

分析 正数a,b,c满足2a-b+c=0,可得b=2a+c,于是$\frac{ac}{{b}^{2}}$=$\frac{ac}{(2a+c)^{2}}$=$\frac{ac}{4{a}^{2}+4ac+{c}^{2}}$=$\frac{1}{\frac{4a}{c}+\frac{c}{a}+4}$,利用基本不等式的性质即可得出.

解答 解:∵正数a,b,c满足2a-b+c=0,∴b=2a+c,
则$\frac{ac}{{b}^{2}}$=$\frac{ac}{(2a+c)^{2}}$=$\frac{ac}{4{a}^{2}+4ac+{c}^{2}}$=$\frac{1}{\frac{4a}{c}+\frac{c}{a}+4}$
≤$\frac{1}{2\sqrt{\frac{4a}{c}•\frac{c}{a}}+4}$=$\frac{1}{8}$,当且仅当c=2a>0时取等号.
故选:C.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设a,b∈R,函数f(x)=ax+b(0≤x≤1),则f(x)>0恒成立是a+2b>0成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知某几何体如图1所示.
(1)根据图2所给几何体的正视图与俯视图(其中正方形网络边长为1),画出几何图形的侧视图,并求该侧视图的面积;
(2)求异面直线AC与EF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(18)=p+2q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列选项中,与sin2017°的值最接近的数为(  )
A.-$\frac{1}{2}$B.-$\frac{3}{5}$C.-$\frac{\sqrt{2}}{2}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在下列条件下,分别求出有多少种不同的做法?
(1)5个不同的球,放入4个不同的盒子,每盒至少一球;
(2)5个相同的球,放入4个不同的盒子,每盒至少一球.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实数x,y满足不等式组$\left\{\begin{array}{l}{y≤3}\\{3x+7y-24≤0}\\{x+4y-8≥0}\end{array}\right.$,则z=|x|+|y|的最小值是(  )
A.8B.4C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“?x0∈R,使得x2-2x-3<0成立”的否定形式是(  )
A.?x0∈R,使得x2-2x-3>0成立B.?x0∈R,使得x2-2x-3≥0成立
C.?x∈R,x2-2x-3<0恒成立D.?x∈R,x2-2x-3≥0恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)的定义域为R,且f(-3)=1,f'(x)>2,则不等式f(x)<2x+7的解集为(-∞,-3).

查看答案和解析>>

同步练习册答案