精英家教网 > 高中数学 > 题目详情
设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为
1
2
,求a,b的值.
(1)由fn(x)=-xn+3ax+b,所以当a=b=1时,f3(x)=-x3+3x+1
f′3
(x)=-3x2+3
=-3(x2-1).
在(0,1)内,
f′3
(x)>0
,在(1,2)内,
f′3
(x)<0

所以在(0,1)内,f3(x)=-x3+3x+1为增函数,在(1,2)内f3(x)=-x3+3x+1为减函数.
则f3(x)的极大值为f3(1)=3,由f3(0)=1,f3(2)=-23+3×2+1=-1
所以函数f3(x)=-x3+3x+1在[0,2]上的最大值为f3(1)=3,最小值为f3(2)=-1;
(2)因为对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,
所以|f3(1)-f3(-1)|≤1,从而有|(-1+3a+b)-(1-3a+b)|=|6a-2|≤1,
所以
1
6
≤a≤
1
2

f′3
(x)=-3x2+3a
=-3(x2-a),
[-1,-
a
],[
a
,1]
内f3(x)0,
所以f3(x)在[-1,-
a
],[
a
,1]
内为减函数,
f3(x)在[-
a
a
]
内为增函数,
只需|f3(
a
)-f3(-
a
)|≤1
,则|(-(
a
)3+3a
a
+b)-((
a
)3-3a
a
+b)|≤1

4a
a
≤1
,解得:a≤
1
316

所以a的取值范围是
1
6
≤a≤
1
316

(3)f4(x)=-x4+3ax+b
由f4(x)在[-1,1]上的最大值为
1
2
,则|f4(x)|≤
1
2

所以-
1
2
f4(1)≤
1
2
,即-
1
2
≤-1+3a+b≤
1
2

-
1
2
f4(-1)≤
1
2
,即-
1
2
≤-1-3a+b≤
1
2

①+②得,
1
2
≤b≤
3
2
,又因为-
1
2
f4(0)≤
1
2
,所以-
1
2
≤b≤
1
2
,所以b=
1
2

b=
1
2
代入①得:0≤a≤
1
3

b=
1
2
代入②得:-
1
6
≤a≤0.
所以a=0.
综上知a,b的值分别为0,
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数fn(x)=xn+x-1,其中n∈N*,且n≥2,给出下列三个结论:
①函数f2(x)在区间(
1
2
,  1
)内不存在零点;
②函数f3(x)在区间(
1
2
,  1
)内存在唯一零点;
③?n∈N*,且n≥4,函数fn(x)在区间(
1
2
,  1)
内存在零点.
其中所有正确结论的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•陕西)设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)设n≥2,b=1,c=-1,证明:fn(x)在区间(
12
,1)
内存在唯一的零点;
(2)设n为偶数,|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
(3)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城二模)设函数fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若对任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范围;
(3)若|f4(x)|在[-1,1]上的最大值为
12
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=xn(1-x)2[
12
,1]
上的最大值为an(n∈N+).
(1)求a1,a2的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)
(Ⅰ)当b>0时,判断函数fn(x)在(0,+∞)上的单调性;
(Ⅱ)设n≥2,b=1,c=-1,证明:fn(x)在区间(
12
,1)
内存在唯一的零点;
(Ⅲ)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围.

查看答案和解析>>

同步练习册答案