精英家教网 > 高中数学 > 题目详情
已知抛物线的焦点F(a,0)(a<0),则抛物线的标准方程是(  )
A、y2=2ax
B、y2=4ax
C、y2=-2ax
D、y2=-4ax
考点:抛物线的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:由焦点F(a,0)(a<0),可设抛物线的方程为y2=-2px,由
p
2
=-a可求p,即可得出物线的标准方程.
解答: 解:由焦点F(a,0)(a<0),可设抛物线的方程为y2=-2px
p
2
=-a
∴p=-2a
∴y2=4ax
故选:B.
点评:本题主要考查了由抛物线的性质求解抛物线的方程,解题的关键是由抛物线的焦点确定抛物线的开口方向,属于基础试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知A=120°,a=14,b+c=16,则△ABC的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知
sinC
sinA
=2,b=2a,那么cosB的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:400个人中至少有两人生日相同 (利用反证法)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:向量
a
=(2cosx,-
3
),
b
=(sinx+
3
cosx,1);函数f(x)=
a
b

(1)设f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<
π
2
),求f(x)的解析式及最小正周期;
(2)在△ABC中,角A,B,C所对边分别是a,b,c,若b2+c2=a2+bc,求f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
m2-1
(m<-1),α是第三象限角,求cos
α
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.
(1)解不等式|g(x)|<5;
(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设全集U=R,M={x|x>2},N={0,1,2,3},则图中阴影部分所表示的集合是(  )
A、{3}
B、{0,1}
C、{0,1,2}
D、{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx-
π
4
)(A>0,ω>0)的部分图象如图所示,△EFG是边长为2 的等边三角形,为了得到g(x)=Asinωx的图象,只需将f(x)的图象(  )
A、向左平移
1
2
个长度单位
B、向右平移
1
2
个长度单位
C、向左平移
π
4
个长度单位
D、向右平移
π
4
个长度单位

查看答案和解析>>

同步练习册答案