精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1\\;x≤0}\\{-2x\\;x>0}\end{array}\right.$,若f(x)=10,则x=-3;函数f(x)的值域为(-∞,0)∪[1,+∞).

分析 当x>0时,f(x)=-2x<0,当x≤0时,f(x)=x2+1≥1,从而求函数的值域与函数值.

解答 解:当x>0时,f(x)=-2x<0,
当x≤0时,f(x)=x2+1≥1,
故函数的值域为(-∞,0)∪[1,+∞);
f(x)=x2+1=10,
故x=-3;
故答案为:-3,(-∞,0)∪[1,+∞).

点评 本题考查了函数的值域的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,sin2$\frac{A}{2}$=$\frac{c-b}{2c}$(a,b,c分别为角A,B,C的对边),则C=(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知命题p:函数f(x)=|2x+3c|在[-1,+∞)上单调递增;命题q:函数g(x)=$\frac{cx}{{x}^{2}+1}$+2有零点
(Ⅰ)若命题p和q均为真命题,求实数c的取值范围
(Ⅱ)是否存在实数c,使得p∧(¬q)是真命题?若存在,求出c的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\frac{x+1}{x-1}$的值域是(  )
A.RB.(-∞,1)∪(1,+∞)C.(-∞,2)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\left\{\begin{array}{l}{x+2(x≤-2)}\\{{x}^{2}(-2<x<2)}\\{2x(x≥2)}\end{array}\right.$
(1)求f(-3),f[f(-$\sqrt{3}$)]的值;
(2)若f(a)=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.画出下列图象:
(1)y=|x2+2x-3|
(2)y=-x2+2|x|+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=2x2-x-1的值域是[-$\frac{9}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=x2+ax+b,A={x|f(x)=2x}={2},试求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合P={x|x2+x-n(n+1)<0},n∈N,若2011∈P,且-2013∉P,则n=2012.

查看答案和解析>>

同步练习册答案