精英家教网 > 高中数学 > 题目详情
设定义在R上的函数y=f(x)是偶函数,且f(x)在(-∞,0)为增函数,f(-1)=0,则不等式x•f(x)<0的解集为(  )
分析:由f(x)的奇偶性、单调性可作出符合题意的f(x)的草图,根据图象即可解得不等式.
解答:解:因为f(x)是偶函数,且在(-∞,0)为增函数,f(-1)=0,
所以f(x)在(0,+∞)上为减函数,且f(1)=0,
作出f(x)的草图如下:
x•f(x)<0?
x<0
f(x)>0
x>0
f(x)<0

由图象解得-1<x<0或x>1,
所以不等式x•f(x)<0的解集为:(-1,0)∪(1,+∞).
故选A.
点评:本题考查函数的单调性、奇偶性及其应用,考查抽象不等式的解法,考查数形结合思想的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R上的函数y=f(x)是偶函数,且f(x)在(-∞,0)为增函数.若对于x1<0<x2,且x1+x2>0,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数y=f(x)满足f(x)+f(-x)=0,f(x+2)=f(x),则函数y=f(x)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数y=f(x)是奇函数,且f(x)在(-∞,0)为增函数,f(-1)=0,则不等式f(x)≥0的解为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数yf(x)满足f(xf(x+2)=12,且f(2 014)=2,则f(0)等于                                                                                      (  )

A.12                              B.6       C.3      D.2

查看答案和解析>>

同步练习册答案