精英家教网 > 高中数学 > 题目详情

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有 (其中SPAB、SPCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有 =(其中VPABE、VPCDF分别为四面体P﹣ABE、P﹣CDF的体积).

【答案】
【解析】解:设PM与平面PDF所成的角为α, 则A到平面PDF的距离h1=PAsinα,C到平面PDF的距离h2=PCsinα,
∴VPABE=VAPBE= =
VPCDF=VCPDF= =
=
故答案为:
设PM与平面PDF所成的角为α,则两棱锥的高的比为 ,底面积比为 ,根据棱锥的体积公式即可得出体积比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)设.

①求

②求

③求

(2)求除以9的余数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列,其中的公差不为.设是数列

的前项和.若是数列的前项,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列为等差数列,求实数

(Ⅲ)构造数列,…,,…,,…,

若该数列前项和,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线 上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P﹣ABC中,底面△ABC满足BA=BC, ,P在面ABC的射影为AC的中点,且该三棱锥的体积为 ,当其外接球的表面积最小时,P到面ABC的距离为(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12为定义在R上的偶函数,当时,

1求函数在R上的解析式;

2在直角坐标系中画出函数的图象;

3若方程-k=0有四个解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点是 ,且椭圆经过点.

(1)求椭圆的标准方程;

(2)若过左焦点且倾斜角为45°的直线与椭圆交于两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C:x2y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.

(1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;

(2)证明:曲线C过定点;

(3)若曲线Cx轴相切,k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+(y-1)2=5,直线lmxy+1-m=0(mR).

(1)判断直线l与圆C的位置关系;

(2)设直线l与圆C交于AB两点,若直线l的倾斜角为120°,求弦AB的长.

查看答案和解析>>

同步练习册答案