精英家教网 > 高中数学 > 题目详情

在△ABC中,数学公式数学公式数学公式,则k的值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:根据两个向量夹角是直角,所以两个向量的数量积为0,列出方程,解出结果.
解答:∵∠A=90°,
=(k,1),=(2,3),
∴2k+3=0,
∴k=-
故选C.
点评:数量积的主要应用:①求模长;②求夹角;③判垂直,本题可以说是判断垂直,也可以说是求夹角的问题,这是比较特殊的关系.在三角形中向量问题是极易出错的,常犯的错误是弄错夹角.考查运算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,S是该三角形的面积,已知向量
p
=(1,2sinA)
q
=(sinA,1+cosA)
,且满足
p
q

(1)求角A的大小;(2)若a=
3
,S=
3
3
4
,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,满足
AB
AC
|
AB
|=3,|
AC
|=4
,点M在线段BC上.
(1)M为BC中点,求
AM
BC
的值;
(2)若|
AM
|=
6
5
5
,求BM:BC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinB+cosB=
3
-1
2

(1)求角B的大小;
(2)又若tanA+tanC=3-
3
,且∠A>∠C,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知sinAsinBcosC=sinAsinCcosB+sinBsinCcosA,若a、b、c分别是角A、B、C所对的边,则
abc2
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若A=
C
2
,求证:
1
3
c-a
b
1
2

查看答案和解析>>

同步练习册答案