精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|y= },集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.
(1)求A∩B;
(2)若A∪C=A,求实数m的取值范围.

【答案】
(1)解:∵A=(﹣∞,﹣2]∪[7,+∞),

B=(﹣4,﹣3)

∴A∩B=(﹣4,﹣3)


(2)∵A∪C=A,

∴CA

①C=,2m﹣1<m+1,

∴m<2

②C≠,则

∴m≥6.

综上,m<2或m≥6.


【解析】(1)解出集合A、B,通过交集运算可得结果,(2)由A∪C=A,CA,对C是否是空集进行分类讨论,求出m的取值范围.
【考点精析】根据题目的已知条件,利用集合的交集运算的相关知识可以得到问题的答案,需要掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△B'CD的位置,使平面BC'D⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=2 ,如图2.
(1)求证:FA∥平面BC'D;
(2)求平面ABD与平面FBC'所成角的余弦值;
(3)在线段AD上是否存在一点M,使得C'M⊥平面FBC?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中, =
(1)求角A;
(2)若a= ,求bc的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(1﹣t),且x 时,f(x)=﹣x2 , 则f(3)+f(﹣ 的值等于(  )
A.﹣
B.﹣
C.﹣
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 若f(2﹣a2)>f(a),则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学巨著,内容极为丰富,其中卷六《均输》里有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”意思是:“5人分取5钱,各人所得钱数依次成等差数列,其中前2人所得钱数之和与后3人所得钱数之和相等.”(“钱”是古代的一种重量单位),则其中第二人分得的钱数是( )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax2(a∈R).
(1)若g(x)= 有三个极值点x1 , x2 , x,求a的取值范围;
(2)若f(x)≥﹣ax3+1对任意x∈[0,1]都恒成立的a的最大值为μ,证明:5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx2的图象经过点M(1,4),且在x=﹣2取得极值.
( I)求实数a,b的值;
( II)若函数f(x)在区间(m,m+1)上不单调,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,过椭圆C: 的左顶点A作直线l,与椭圆C和y轴正半轴分别交于点P,Q.

(1)若AP=PQ,求直线l的斜率;
(2)过原点O作直线l的平行线,与椭圆C交于点M,N,求证: 为定值.

查看答案和解析>>

同步练习册答案