精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C的一个顶点为,且过抛物线的焦点F

(1)求椭圆C的方程及离心率;

(2)设点Q是椭圆C上一动点,试问直线上是否存在点P,使得四边形PFQB是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】(1);(2)见解析

【解析】

1)求出椭圆C的方程为y21,然后求解椭圆的离心率即可.

2)设Pt4t),Qx0y0),推出,解得x02ty0t3,代入y21,转化求解t,判断是否存在点P

(1)椭圆C的一个顶点为,可得

抛物线的焦点

椭圆方程为

(2)由已知,设

PFQB是平行四边形,则

整理得

将上式代入

整理得

解得,或

此时,经检验,符合四边形PFQB是平行四边形,

所以存在满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

附:对于一组数据,其回归直线的斜率的最小二乘估计值为

本题参考数值:.

1)若销量y与单价x服从线性相关关系,求该回归方程;

2)在(1)的前提下,若该产品的成本是5/件,问:产品该如何确定单价,可使工厂获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1) 讨论的单调性;

(2) ,当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某品牌饮料的某种食品添加剂是否超标,现对该品牌下的两种饮料一种是碳酸饮料含二氧化碳,另一种是果汁饮料不含二氧化碳进行检测,现随机抽取了碳酸饮料、果汁饮料各10均是组成的一个样本,进行了检测,得到了如下茎叶图根据国家食品安全规定当该种添加剂的指标大于毫克为偏高,反之即为正常.

1)依据上述样本数据,完成下列列联表,并判断能否在犯错误的概率不超过的前提下认为食品添加剂是否偏高与是否含二氧化碳有关系?

正常

偏高

合计

碳酸饮料

果汁饮料

合计

2)现从食品添加剂偏高的样本中随机抽取2瓶饮料去做其它检测,求这两种饮料都被抽到的概率.

参考公式:,其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,圆C的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1求圆C的普通方程和直线l的直角坐标方程;

2M是直线l上任意一点,过M做圆C切线,切点为AB,求四边形AMBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:

甲公司

乙公司

职位

A

B

C

D

职位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

获得相应职位概率

0.4

0.3

0.2

0.1

获得相应职位概率

0.4

0.3

0.2

0.1

(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;

(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:

选择意愿

人员结构

40岁以上(含40岁)男性

40岁以上(含40岁)女性

40岁以下男性

40岁以下女性

选择甲公司

110

120

140

80

选择乙公司

150

90

200

110

若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k15.5513,测得出选择意愿与年龄有关系的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,.

1)求平面与平面所成锐二面角的余弦值;

2)点是线段上的动点,当直线所成的角最小时,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四本不同的书分给三位同学,每人至少分到一本,每本书都必须有人分到,不能同时分给同一个人,则不同的分配方式共有__________种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为

1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;

2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.

查看答案和解析>>

同步练习册答案