精英家教网 > 高中数学 > 题目详情
在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目。已知某班第一小组与第二小组各 有六位同学选择科目甲或科 目乙,情况如下表:
 
科目甲
科目乙
总计
第一小组
1
5
6
第二小组
2
4
6
总计
3
9
12
现从第一小组、第二小 组中各任选2人分析选课情况.
(1)求选出的4 人均选科目乙的概率;
(2)设为选出的4个人中选科目甲的人数,求的分布列和数学期望.
(1)(2)的分布列为


 







的数学期望 

试题分析:(1)设“从第一小组选出的2人选科目乙”为事件
“从第二小组选出的2人选科目乙””为事件.由于事 件相互独立,
,   .  4分
所以选出的4人均选科目乙的概率为
   6分
(2)设可能的取值为0,1,2,3.得
,  ,
… 9分
的分布列为


 







的数学期望        12分
点评:本题考查了随机事件的概率及随机变量的分布列、期望的综合运用,考查了学生的计算能力及解决实际问题的能力,掌握求分布列的步骤及期望公式是解决此类问题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:

规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(1)试用上述样本数据估计甲、乙两厂生产的优等品率;
(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望
(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知一种名贵花卉种子的发芽率为,现种植这种种子4粒,求:
(Ⅰ)至少有3粒发芽的概率;
(Ⅱ)种子发芽的粒数的分布列及平均数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:
日最高气温t(单位:℃)
t≤22
22<t≤28
28<t≤32
t>32
天数
6
12
Y
Z
由于工作疏忽,统计表被墨水污染,YZ数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
某水果商根据多年的销售经验,六月份的日最高气温t(单位:℃)对西瓜的销售影响如下表:
日最高气温t(单位:℃)
t≤22
22<t≤28
28<t≤32
t>32
日销售额X(单位:千元)
2
5
6
8
(1)求YZ的值;
(2)若视频率为概率,求六月份西瓜日销售额的期望和方差;
(3)在日最高气温不高于32℃时,求日销售额不低于5千元的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

样本中共有5个个体,其值分别为.若该样本的平均值为1,则样本方差为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知某运动员罚球命中的概率为0.7,则他罚球2次(每次罚球结果互不影响)的得分的数学期望是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某人上楼梯,每步上一阶的概率为,每步上二阶的概率为,设该人从台阶下的平台开始出发,到达第阶的概率为.
(1)求;;
(2)该人共走了5步,求该人这5步共上的阶数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)一厂家向用户提供的一箱产品共件,其中有件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.
(Ⅰ)求这箱产品被用户接收的概率;
(Ⅱ)记抽检的产品件数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

同步练习册答案