精英家教网 > 高中数学 > 题目详情
(2012•静安区一模)若空间有四个点,则“这四个点中三点在同一条直线上”是“这四个点在同一个平面上”的(  )
分析:用由一条直线和直线外一点确定一个平面验证充分性成立,反之:“四个点在同一平面上”可能推出“两点分别在两条相交或平行直线上”,从而必要性不成立.
解答:解:充分性成立:“这四个点中有三点在同一直线上”,则第四点不在共线三点所在的直线上,
由一条直线和直线外一点确定一个平面,推出“这四点在唯一的一个平面内”;
必要性不成立:“四个点在同一平面上”可能推出“两点分别在两条相交或平行直线上”;
故选D.
点评:本题考查了确定平面的依据:即公理2和推论,还有必要条件、充分条件与充要条件的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•静安区一模)在△ABC中,a、b、c分别为角A、B、C所对的三边长,若(a2+c2-b2)tanB=
3
ac
,则角B的大小为
π
3
3
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•静安区一模)记min{a,b}=
a,  当a≤b时
b,  当a>b时
,已知函数f(x)=min{x2+2tx+t2-1,x2-4x+3}是偶函数(t为实常数),则函数y=f(x)的零点为
x=±3,±1
x=±3,±1
.(写出所有零点)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•静安区一模)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•静安区一模)已知正三棱锥的底面边长为2,高为1,则该三棱锥的侧面积为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•静安区一模)设i为虚数单位,若复数(1+i)2-
b1+i
(b∈R)的实部与虚部相等,则实数b的值为
-2
-2

查看答案和解析>>

同步练习册答案