A. | $[{-\sqrt{2},\sqrt{2}}]$ | B. | $[{-1,\sqrt{2}}]$ | C. | $(-1,1]∪\{\sqrt{2}\}$ | D. | $(-1,1]∪\{-\sqrt{2}\}$ |
分析 曲线x=$\sqrt{1-{y^2}}$即 x2+y2=1(x≥0)表示一个半径为1的半圆,如图,数形结合求得当直线y=x+b与曲线x=$\sqrt{1-{y^2}}$恰有一个公共点时b的取值范围.
解答 解:曲线x=$\sqrt{1-{y^2}}$即 x2+y2=1(x≥0)表示一个半径为1的半圆,如图所示.
当直线y=x+b经过点A(0,1)时,求得b=1,
当直线y=x+b经过点B(1,0)时,求得b=-1,
当直线和半圆相切于点D时,由圆心O到直线y=x+b的距离等于半径,
可得$\frac{|0-0+b|}{\sqrt{2}}$=1,求得b=-$\sqrt{2}$,或b=$\sqrt{2}$(舍去).
故当直线y=x+b与曲线x=$\sqrt{1-{y^2}}$恰有一个公共点时b的取值范围是-1<b≤1或b=-$\sqrt{2}$,
故选:D.
点评 本题主要考查了直线与圆相交的性质.对于此类问题除了用联立方程转化为方程的根的问题之外,也可用数形结合的方法较为直观,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 函数f(x)=1既是奇函数又是偶函数 | B. | 函数f(x)=(1-x)$\sqrt{\frac{1+x}{1-x}}$是偶函数 | ||
C. | 函数f(x)=$\frac{{x}^{2}-2x}{x-2}$是奇函数 | D. | 函数f(x)=x+$\sqrt{{x}^{2}-1}$是非奇非偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | $(0,\frac{1}{2})$ | C. | $[\frac{1}{4},\frac{1}{2})$ | D. | $[\frac{1}{4},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com