精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=alnx+b(a,b∈R),曲线f(x)在x=1处的切线方程为x﹣y﹣1=0.
(Ⅰ)求a,b的值;
(Ⅱ)证明:
(Ⅲ)已知满足xlnx=1的常数为k.令函数g(x)=mex+f(x)(其中e是自然对数的底数,e=2.71828…),若x=x0是g(x)的极值点,且g(x)≤0恒成立,求实数m的取值范围.

【答案】解:(Ⅰ)f(x)的导函数

由曲线f(x)在x=1处的切线方程为x﹣y﹣1=0,知f'(1)=1,f(1)=0,

所以a=1,b=0.

(Ⅱ)令 = ,则 =

当0<x<1时,u'(x)<0,u(x)单调递减;当x>1时,u'(x)>0,u(x)单调递增,

所以,当x=1时,u(x)取得极小值,也即最小值,该最小值为u(1)=0,

所以u(x)≥0,即不等式 成立.

(Ⅲ)函数g(x)=mex+lnx(x>0),则

当m≥0时,g'(x)>0,函数g(x)在(0,+∞)内单调递增,g(x)无极值,不符合题意;

当m<0时,由 ,得

结合y=ex 在(0,+∞)上的图象可知,关于x的方程 一定有解,其解为x0(x0>0),且当0<x<x0时,g'(x)>0,g(x)在(0,x0)内单调递增;

当x>x0时,g'(x)<0,g(x)在(x0,+∞)内单调递减.

则x=x0是函数g(x)的唯一极值点,也是它的唯一最大值点,x=x0也是g'(x)=0在(0,+∞)上的唯一零点,即 ,则

所以g(x)max=g(x0)= =

由于g(x)≤0恒成立,则g(x)max≤0,即 ,(*)

考察函数 ,则

所以h(x)为(0,+∞)内的增函数,且

又常数k满足klnk=1,即

所以,k是方程 的唯一根,

于是不等式(*)的解为x0≤k,

又函数 (x>0)为增函数,故

所以m的取值范围是


【解析】(Ⅰ)求出导函数,根据切线方程和导函数的关系求出参数的值;

(Ⅱ)构造函数 = ,通过导函数求出函数的最小值,得出u(x)≥0,得出结论成立.(Ⅲ)求出导函数 ,对参数m分类讨论,得出函数的极值情况,得出函数的最大值,把恒成立问题转化为最值问题求解;

,通过构造函数 ,结合题意得出x0≤k,构造函数 ,得出m的取值范围.

【考点精析】掌握函数的最大(小)值与导数是解答本题的根本,需要知道求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣ax﹣lnx,a∈R.
(Ⅰ)若函数f(x)的图象在x=1处的切线斜率为1,求实数a的值;
(Ⅱ)当a≥﹣1时,记f(x)的极小值为H,求H的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ADEF和菱形ABCD所在平面互相垂直,如图,其中AF=1,AD=2,∠ADC= ,点N时线段AD的中点.
(Ⅰ)试问在线段BE上是否存在点M,使得直线AF∥平面MNC?若存在,请证明AF∥平面MNC,并求出 的值,若不存在,请说明理由;
(Ⅱ)求二面角N﹣CE﹣D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣ |+|x+m|,(m>0)
(I)证明:f(x)≥4
(II)若f(1)>5,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex+ (其中a∈R)有两个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为x2+y2﹣6x=0,过点(1,2)的该圆的三条弦的长a1 , a2 , a3构成等差数列,则数列a1 , a2 , a3的公差的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期为π,且f(﹣x)=f(x),则(
A.f(x)在(0, )单调递增
B.f(x)在( )单调递减
C.f(x)在( )单调递增
D.f(x)在( ,π)单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果存在常数a,使得数列{an}满足:若x是数列{an}中的一项,则a﹣x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:2,3,6,m(m>6)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列{bn}的项数是n0(n0≥3),所有项之和是B,求证:数列{bn}是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =( sin ,cos =(cos ,cos ),f(x)=
(1)若函数f(x)的最小正周期和单调递增区间;
(2)若a,b,c分别是△ABC的内角A,B,C所对的边,且a=2,(2a﹣b)cosC=ccosB, ,求c.

查看答案和解析>>

同步练习册答案