【题目】已知等差数列满足且,等比数列的首项为2,公比为.
(1)若,问等于数列中的第几项?
(2)若,数列和的前项和分别记为和,的最大值为,试比较与的大小.
科目:高中数学 来源: 题型:
【题目】定义函数,数列满足,.
(1)若,求及;
(2)若且数列为周期函数,且最小正周期,求的值;
(3)是否存在,使得成等比数列?若存在,求出所有这样的,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,是圆M内一定点,动点P为圆M上任意一点,线段PN的垂直平分线l和半径MP相交于点C.
(1)求点C的轨迹方程;
(2)设直线与C交于不同两点A,B,点O为坐标原点,当的面积S取最大值时,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列A: , ,… ().如果对小于()的每个正整数都有 < ,则称是数列A的一个“G时刻”.记“是数列A的所有“G时刻”组成的集合.
(1)对数列A:-2,2,-1,1,3,写出的所有元素;
(2)证明:若数列A中存在使得>,则 ;
(3)证明:若数列A满足- ≤1(n=2,3, …,N),则的元素个数不小于 -.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学研究表明,人极易受情绪的影响,某选手参加7局4胜制的兵乒球比赛.
(1)在不受情绪的影响下,该选手每局获胜的概率为;但实际上,如果前一句获胜的话,此选手该局获胜的概率可提升到;而如果前一局失利的话,此选手该局获胜的概率则降为,求该选手在前3局获胜局数的分布列及数学期望;
(2)假设选手的三局比赛结果互不影响,且三局比赛获胜的概率为,记为锐角的内角,求证:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数的定义域为,且存在实常数a,使得对于定义域内任意x,都成立,则称此函数具有“性质”
(1)判断函数是否具有“性质”,若具有“性质”,求出所有a的值的集合;若不具有“性质”,请说明理由;
(2)已知函数具有“性质”,且当时,,求函数在区间上的值域;
(3)已知函数具有“性质”,又具有“性质”,且当时,,若函数的图像与直线有2017个公共点,求实数p的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了了解年研发资金投人量(单位:亿元)对年销售额(单位:亿元)的影响.对公司近年的年研发资金投入量和年销售额的数据,进行了对比分析,建立了两个函数模型:①,②,其中、、、均为常数,为自然对数的底数.并得到一些统计量的值.令,,经计算得如下数据:
(1)请从相关系数的角度,分析哪一个模型拟合程度更好?
(2)(ⅰ)根据(1)的选择及表中数据,建立关于的回归方程;
(ⅱ)若下一年销售额需达到亿元,预测下一年的研发资金投入量是多少亿元?
附:①相关系数,
回归直线中公式分别为:,;
②参考数据:,,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com