【题目】如图,四边形CDEF是正方形,四边形ABCD为直角梯形,∠ADC=90°,AB∥DC,平面CDEF⊥平面ABCD,AB=ADCD=a,M在FB上,且BD∥平面ECM.
(1)求证:M为BF中点;
(2)求证:平面BCF⊥平面EMC;
(3)求直线CD与平面ECM所成角的正弦值.
【答案】(1)见解析(2)见解析(3).
【解析】
(1)连结,,交于点,则是中点,连结,由平面,得,由此能证明为中点;
(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能证明平面平面;
(3)求出,,,平面的法向量,1,,利用向量法能求出直线与平面所成角的正弦值.
(1)证明:连结DF,CE,交于点O,则O是DF中点,连结OM,
∴BD∥平面ECM,OM平面BDF,
∴BD∥OM,∴M为BF中点.
(2)证明:以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,
则B(a,a,0),C(0,2a,0),F(0,2a,2a),M(),E(0,0,2a),
(﹣a,a,0),(﹣a,a,2a),(,,﹣a),(0,2a,﹣2a),
设平面BCF的法向量(x,y,z),
则,取x=1,得(1,1,0),
设平面EMC的法向量(x1,y1,z1),
则,取z1=1,得(﹣1,1,1),
∵0,∴平面BCF⊥平面EMC.
(3)解:D(0,0,0),(0,﹣2a,0),平面EMC的法向量(﹣1,1,1),
设直线CD与平面ECM所成角为θ,
则直线CD与平面ECM所成角的正弦值为:
sinθ.
科目:高中数学 来源: 题型:
【题目】在流行病学调查中,潜伏期指自病原体侵入机体至最早临床症状出现之间的一段时间.某地区一研究团队从该地区500名A病毒患者中,按照年龄是否超过60岁进行分层抽样,抽取50人的相关数据,得到如下表格:
潜伏期(单位:天) | ||||||||
人 数 | 60岁及以上 | 2 | 5 | 8 | 7 | 5 | 2 | 1 |
60岁以下 | 0 | 2 | 2 | 4 | 9 | 2 | 1 |
(1)估计该地区500名患者中60岁以下的人数;
(2)以各组的区间中点值为代表,计算50名患者的平均潜伏期(精确到0.1);
(3)从样本潜伏超过10天的患者中随机抽取两人,求这两人中恰好一人潜伏期超过12天的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,B1,B2是椭圆的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为时,线段PB1的长为.
(1)求椭圆的标准方程;
(2)设点Q满足: .求证:△PB1B2与△QB1B2的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,∠A,∠B,∠C所对边分别为a,b,c,且bsinC+2csinBcosA=0.
(1)求∠A大小;
(2)若a=2,c=2,求△ABC的面积S的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼 让斑马线”行为统计数据:
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口 9月份的不“礼让斑马线”违章驾驶员人数;
(3)若从表中3、4月份分别抽取4人和2人,然后再从中任选2 人进行交规调查,求抽到的两人恰好来自同一月份的概率.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数且x,.
(1)判断的奇偶性,并用定义证明;
(2)若不等式在上恒成立,试求实数a的取值范围;
(3)的值域为函数在上的最大值为M,最小值为m,若成立,求正数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根,称为的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)求表达式;
(3)把函数,的最大值记作、最小值记作,令,若恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆经过点,且和直线相切.
(Ⅰ)求该动圆圆心的轨迹的方程;
(Ⅱ)已知点,若斜率为1的直线与线段相交(不经过坐标原点和点),且与曲线交于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定一个项的实数列, , , ,任意选取一个实数,变换将数列, , , 变换为数列, , , ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数可以不相同,第次变换记为,其中为第次变换时所选择的实数.如果通过次变换后,数列中的各项均为,则称, , , 为“次归零变换”.
()对数列, , , ,给出一个“次归零变换”,其中.
()对数列, , , , ,给出一个“次归零变换”,其中.
()证明:对任意项的实数列,都存在“次归零变换”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com