精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ln(x+1)+ax.

(1)当x=0时,函数f(x)取得极大值,求实数a的值;

(2)若存在x∈[1,2],使不等式f′(x)≥2x成立,其中f′(x)为f(x)的导函数,求实数a的取值范围;

(3)求函数f(x)的单调区间.

(1)f′(x)=+a

由f′(0)=0,得a=-1,此时f′(x)=-1.

当x∈(-1,0)时,f′(x)>0,

函数f(x)在区间(-1,0)上单调递增;

当x∈(0,+∞)时,f′(x)<0,

函数f(x)在区间(0,+∞)上单调递减;

∴函数f(x)在x=0处取得极大值,故a=-1.

(2)∵f′(x)≥2x,∴+a≥2x,∴a≥2x-.

令g(x)=2x-(1≤x≤2),

∴g′(x)=2+>0,

∴g(x)在[1,2]上是增函数,

∴a≥g(1)=.

(3)∵f′(x)=+a.

>0,

∴当a≥0时,f′(x)>0,函数f(x)在(-1,+∞)上是增函数.

当a<0时,令f′(x)=0,得x=--1;

当x∈(-1,--1)时,f′(x)>0,

当x∈(--1,+∞)时,f′(x)<0;

综上,当a≥0时,函数f(x)的单调递增区间是(-1,+∞);

当a<0时,函数f(x)的单调递增区间是(-1,--1),单调递减区间是

(--1,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函数y=g(x)-x在[0,1]上的最小值;

(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.

(3)当x≥0时,g(x)≥-f(x)+恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3+x-16,

(1)求曲线y=f(x)在点(2,-6)处的切线的方程;

(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;

 

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题

已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.

(1)求使直线l和y=f(x)相切且以P为切点的直线方程;

(2)求使直线l和y=f(x)相切且切点异于P的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.

(1)求a的值和切线l的方程;

(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围

 

查看答案和解析>>

同步练习册答案