精英家教网 > 高中数学 > 题目详情

【题目】已知函数在点处的切线方程为.

1)求

2)设曲线轴负半轴的交点为点,曲线在点处的切线方程为,求证:对于任意的实数,都有

3)若关于的方程有两个实数根,且,证明:.

【答案】1;(2)证明见解析;(3)证明见解析.

【解析】

1)将点代入切线方程得出,并求出函数的导数,由求出的值;

2)求出点的坐标,并利用导数求出函数在点处切线对应的函数,然后构造函数,利用导数证明出

3)求出方程的根,利用函数的单调性证明出,设函数在原点处的切线对应的函数为,易得的根为,由函数的单调性得出,再利用不等式的性质可证明结论成立.

1)将代入切线方程中,有

所以,即

,所以

,则,与矛盾,故

2)由(1)可知,令,有

故曲线轴负半轴的唯一交点.

曲线在点处的切线方程为,则

,则

所以.

时,若

上单调递增,,故上单调递减,

时,由时单调递增,,函数上单调递增.

所以,即成立;

3,设的根为,则

单调递减,且,所以

设曲线在点处的切线方程为,有

时,

时,

故函数上单调递增,又

所以当时,,当时,

所以函数在区间上单调递减,在区间上单调递增,

所以,即

的根为,则

又函数单调递增,故,故.

,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,且此抛物线的准线被椭圆截得的弦长为.

1)求椭圆的标准方程;

2)直线交椭圆两点,线段的中点为,直线是线段的垂直平分线,试问直线是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001002599600从中抽取60个样本,如下提供随机数表的第4行到第6行:

32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号  

A. 522B. 324C. 535D. 578

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:

人数

10

15

20

25

30

35

40

件数

4

7

12

15

20

23

27

1)在答题卡给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数与进店人数是否线性相关?(给出判断即可,不必说明理由);

2)建立关于的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数).

(参考数据:

参考公式:,其中为数据的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程.

(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?

优等生

非优等生

总计

学习大学先修课程

250

没有学习大学先修课程

总计

150

(Ⅱ)某班有5名优等生,其中有2名参加了大学生先修课程的学习,在这5名优等生中任选3人进行测试,求这3人中至少有1名参加了大学先修课程学习的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图放置的边长为1的正方形沿轴滚动恰好经过原点.设顶点的轨迹方程是则对函数有下列判断①函数是偶函数;②对任意的都有;③函数在区间上单调递减;④函数的值域是;⑤.其中判断正确的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

I)在答题卡上作出这些数据的频率分布直方图:

II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);

III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合质量指标值不低于95的产品至少要占全部产品的80%的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长为1的正方体,点是四边形内(含边界)任意一点, 中点,有下列四个结论:

;②当点为中点时,二面角的余弦值;③所成角的正切值为;④当时,点的轨迹长为.

其中所有正确的结论序号是(

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调研机构,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,结果显示,有人为“低碳族”,该人的年龄情况对应的频率分布直方图如图.

1)根据频率分布直方图,估计这名“低碳族”年龄的平均值,中位数;

2)若在“低碳族”且年龄在的两组人群中,用分层抽样的方法抽取人,试估算每个年龄段应各抽取多少人?

查看答案和解析>>

同步练习册答案