【题目】若函数满足对任意,都有成立,则实数的取值范围是______.
【答案】
【解析】
根据题中条件,可以先判断出函数f(x)在R上单调递增,再结合分段函数的解析式,要每一段都是增函数,且分界点时右段函数的函数值要大于等于左段函数的函数值,列出不等关系,求解即可得到a的取值范围.
:∵对任意x1≠x2,都有成立,
∴x1-x2与f(x1)-f(x2)同号,
根据函数单调性的定义,可知f(x)在R上是单调递增函数,
∴当时,f(x)=(为增函数,则 ,即a<3,①
且当x=2时,有最小值 ;
当时,f(x)=为二次函数,图象开口向下,对称轴为x=2,
若f(x)在(-∞,2)上为增函数,且 ;
又由题意,函数在定义域R上单调递增,
则,解得 ;②
综合①②可得a的取值范围: ,
即答案为.
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是(写出所有正确命题的编号).
①当0<CQ< 时,S为四边形
②当CQ= 时,S为等腰梯形
③当CQ= 时,S与C1D1的交点R满足C1R=
④当 <CQ<1时,S为六边形
⑤当CQ=1时,S的面积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有直线和平面,则下列四个命题中,正确的是( )
A. 若m∥α,n∥α,则m∥nB. 若mα,nα,m∥β,l∥β,则α∥β
C. 若α⊥β,mα,则m⊥βD. 若α⊥β,m⊥β,mα,则m∥α
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.
写出关于的函数关系式;
应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某村电费收取有以下两种方案供农户选择:
方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取;
方案二:不收管理费,每度0.58元.
(1)求方案一收费(元)与用电量(度)间的函数关系;
(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?
(3)老王家该月用电量在什么范围内,选择方案一比选择方案二更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C: =1(a>b>0)的离心率为 ,其左焦点到点P(2,1)的距离为 ,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.
(1)求椭圆C的方程;
(2)求△APB面积取最大值时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的参数方程为 (t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,其前n项和为Sn , {bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 证明:Tn+12=﹣2an+10bn(n∈N*).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com