【题目】如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
【答案】
(1)证明:连CG,FG,则四边形DEGC是平行四边形,得到DF∥CG
DF平面ABC,CG平面ABC
所以FD∥平面ABC;
(2)证明:设二面角B﹣FC﹣G的大小为α
易知BG⊥平面FCG,所以△FCG为△BFC的射影
∴cosα=
∴tanα=
【解析】(1)连CG,FG,由已知中F是BE的中点,结合三角形中位线的性质,可得FG平行且等于AE的一半,又由EA、CD都垂直于平面ABC,且EA=2a,DC=a,可得四边形DEGC是平行四边形,进而得到DF∥CG,由线面平行的判定定理即可得到FD∥平面ABC;(2)易知BG⊥平面FCG,所以△FCG为△BFC的射影,故分别计算面积可求二面角的余弦值,从而得解.
【考点精析】通过灵活运用直线与平面平行的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且满足(2b﹣a)cosC=ccosA.
(Ⅰ)求角C的大小;
(Ⅱ)设y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判断当y取得最大值时△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2为双曲线 的左右焦点,过F1的直线l与圆x2+y2=b2相切于点M,且|MF2|=2|MF1|,则直线l的斜率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,直线l:x﹣ty﹣2=0.
(1)若直线l与曲线y=f(x)有且仅有一个公共点,求公共点横坐标的值;
(2)若0<m<n,m+n≤2,求证:f(m)>f(n).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m是一个给定的正整数,m≥3,设数列{an}共有m项,记该数列前i项a1 , a2 , …,ai中的最大项为Ai , 该数列后m﹣i项ai+1 , ai+2 , …,am中的最小项为Bi , ri=Ai﹣Bi(i=1,2,3,…,m﹣1);
(1)若数列{an}的通项公式为 (n=1,2,…,m),求数列{ri}的通项公式;
(2)若数列{an}满足a1=1,r1=﹣2(i=1,2,…,m﹣1),求数列{an}的通项公式;
(3)试构造项数为m的数列{an},满足an=bn+cn , 其中{bn}是公差不为零的等差数列,{cn}是等比数列,使数列{ri}是单调递增的,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为R的偶函数f(x)满足对x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,DA⊥平面PAB,DC∥AB,DA=DC=2,AB=AP=4,∠PAB=120°,M为PB中点.
(Ⅰ)求证:CM∥平面PAD;
(Ⅱ)求二面角M﹣AC﹣B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com