【题目】已知数列中, , .
(Ⅰ)证明数列是等比数列;
(Ⅱ)若是数列的前项和,求.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.
(1)求证:AB⊥PC;
(2)在线段PD上,是否存在一点M,使得二面角MACD的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点,一个焦点为的椭圆被直线截得的弦的中点的横坐标为.
(1)求此椭圆的方程;
(2)设直线与椭圆交于两点,且以为对角线的菱形的一个顶点为,求面积的最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.给出下列命题:
①函数具有“性质”;
②若奇函数具有“性质”,且,则;
③若函数具有“性质”,图象关于点成中心对称,且在上单调递减,则在上单调递减,在上单调递增;
④若不恒为零的函数同时具有“性质”和“性质”,且函数对,都有 成立,则函数是周期函数.
其中正确的是__________(写出所有正确命题的编号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校组织的高二女子排球比赛中,有、两个球队进入决赛,决赛采用7局4胜制.假设、两队在每场比赛中获胜的概率都是.并记需要比赛的场数为.
(Ⅰ)求大于4的概率;
(Ⅱ)求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+1+|3-x|,x≥-1.
(1)求不等式f(x)≤6的解集;
(2)若f(x)的最小值为n,正数a,b满足2nab=a+2b,求2a+b的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为偶函数,且函数
图象的两相邻对称轴间的距离为.
(1)求的值;
(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图象,求的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com