精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中)的图象关于点 成中心对称,且与点相邻的一个最低点为,则对于下列判断:

①直线是函数图象的一条对称轴;②函数为偶函数;

③函数的图象的所有交点的横坐标之和为.

其中正确的判断是__________________.(写出所有正确判断的序号)

【答案】②③

【解析】

根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案.

函数(其中)的图象关于点 成中心对称,且与点相邻的一个最低点为,,
则:
所以 进一步解得:

由于(其中)的图象关于点 成中心对称,,所以:

解得: ,由于
所以:当 时,
所以:

①当时,故错误.

为偶函数,故正确.
③由于:

则:

所以函数的图象与6个交点.
根据函数的交点设横坐标为
根据函数的图象所有交点的横标和为.故正确.
故答案为:②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)若函数在其定义域内为增函数,求实数的取值范围;

(3)设函数,若在区间上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=a|x﹣b|+c满足①函数f(x)的图象关于x=1对称;②在R上有大于零的最大值;③函数f(x)的图象过点(0,1);④a,b,c∈Z,试写出一组符合要求的a,b,c的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,且与直线3x﹣4y+1=0相切.

(1)求圆C的方程;

(2)若直线l:y=kx+2与圆C交于M,N两点,是否存在直线l,使得(O为坐标原点)若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,

1)证明:

2)若,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商家生产一种产品需要先进行市场调研计划对北京、上海、广州三地进行市场调研待调研结束后决定生产的产品数量下列四种方案中最可取的是(  )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,下列结论中错误的是

A. , f()=0

B. 函数y=f(x)的图像是中心对称图形

C. f(x)的极小值点,则f(x)在区间(-∞,)单调递减

D. fx)的极值点,则()=0

查看答案和解析>>

同步练习册答案