精英家教网 > 高中数学 > 题目详情
13.方程ex=2-x的解所在的一个区间为(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

分析 将x=-1,x=0,x=1代入方程转化为函数的表达式,结合零点的判定定理,得出答案.

解答 解:方程ex=2-x的解所在的一个区间就是函数f(x)=ex-2+x的零点所在区间.
∵f(-1)=$\frac{1}{e}$+1-2=$\frac{1}{e}$-1<0,f(0)=1-2=-1<0,
f(1)=e-1-2<0,f(2)=e2-4>0,
∴函数f(x)的零点在(1,2)内,
故选:D.

点评 本题考查了函数的零点的判定定理,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在五面体ABCDEF中,底面ABCD是正方形,△ADE,△BCF都是等边三角形,EF∥AB,且EF>AB,M,O分别为EF,BD的中点,连接MO.
(Ⅰ)求证:MO⊥底面ABCD;
(Ⅱ)若EF=2AB,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(2tanα,tanβ),向量$\overrightarrow{b}$=(4,-3),且$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$,则tan(α+β)等于(  )
A.$\frac{1}{7}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=kx3-3kx2+b在区间[-2,2]上的最大值为3,最小值为-17,求k,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥 P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=$\sqrt{2}$a.
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“a>b”是“a2>b2”的__________条件(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数a>0,且函数$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$为奇函数.判断函数f(x)的单调性,并用单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=$\sqrt{2}$,AB=AD=1,则异面直线AB与CD所成角的正切值为.(  )
A.$\sqrt{7}$B.$\frac{\sqrt{7}}{8}$C.$\frac{\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,a1=2,2an+1=2an+1,则a2015的值是(  )
A.1009B.1008C.1010D.1011

查看答案和解析>>

同步练习册答案