精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若的极值点,求的极大值;

(2)求实数的范围,使得恒成立.

【答案】(1)(2)

【解析】试题分析: Ⅰ)由于x=3f(x)的极值点,则f′(3)=0求出a,进而求出f′(x)>0得到函数的增区间,求出f′(x)<0得到函数的减区间,即可得到函数的极大值;
Ⅱ)由于f(x)≥1恒成立,即x>0时, 恒成立,设g(x)= 分类讨论参数a,得到函数g(x)的最小值≥0,即可得到a的范围.

试题解析:

(1)

的极值点

解得

时,

变化时,

递增

极大值

递减

极小值

递增

的极大值为.

(2)要使得恒成立,即时, 恒成立,

(i)当时,由得函数单调减区间为,由得函数单调增区间为,此时,得.

(ii)当时,由得函数单调减区间为,由得函数单调增区间为,此时 不合题意.

(iii)当时, 上单调递增,此时 不合题意

(iv)当时,由得函数单调减区间为,由得函数单调增区间为,此时 不合题意.

综上所述: 时, 恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中,下列说法正确的是 . (填序号)
①MB∥平面A1DE;
②|BM|是定值;
③A1C⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间

(2)若存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共12分)

已知函数 为自然对数的底数).

(Ⅰ)讨论的单调性;

(Ⅱ)当时,不等式恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2为椭圆C: (a>b>0)的左、右焦点,M为椭圆C的上顶点,且|MF1|=2,右焦点与右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)若直线l与椭圆C相交于A,B两点,且直线OA,OB的斜率kOA , kOB满足kOAkOB=﹣ ,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x2+ax﹣a﹣1),给出下列命题:
①函数f(x)有最小值;
②当a=0时,函数f(x)的值域为R;
③若函数f(x)在区间(﹣∞,2]上单调递减,则实数a的取值范围是a≤﹣4.
其中正确的命题是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线,动点到点的距离与到直线的距离之比等于.

(1)求动点的轨迹的方程;

(2)设轨迹轴负半轴交于点,过点作不与轴重合的直线交轨迹于两点,直线分别交直线于点.试问:在轴上是否存在定点,使得?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面分别是的中点,.

(1)求二面角的余弦值;

(2)点是线段上的动点,当直线所成的角最小时,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为奇函数,且当x>0时, 2x
(1)求当x<0时,函数f(x)的表达式
(2)解不等式f(x)≤3.

查看答案和解析>>

同步练习册答案