精英家教网 > 高中数学 > 题目详情

【题目】时,

)求

)猜想的关系,并用数学归纳法证明.

【答案】解:(I

II)猜想:即:

n∈N*

下面用数学归纳法证明

时,已证

假设n=k时,Sk=Tkk≥1k∈N*),即:

可知,对任意都成立.

【解析】

试题()令中的,即可求出,令,即可求出,同理,令中的,即可求出,令,即可求出;()根据第()问中求得的,猜想可得:,用数学归纳法证明,首先证当时命题成立,然后假设当时命题成立,即下面证明当时,命题也成立,必须要用到上面的假设,从出发开始进行证明,得到 ,经过合并整理,可以得到,由以上可知,命题对一切正整数都成立,所以猜想成立,问题得证.本题主要考查数学归纳法证明的步骤及格式要求.

试题解析:(

)猜想:即:

…4

下面用数学归纳法证明

时,已证

假设时,,即:

可知,对任意都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC的内角A,B,C的对边分别为a,b,c,已知(b-c)2a2bc.

(1)求sinA

(2)若a=2,且sinB,sinA,sinC成等差数列,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3x2+xa∈R.

(Ⅰ)当a=1时,求fx)在[﹣1,1]上的最大值和最小值;

(Ⅱ)若fx)在区间[,2]上单调递增,求a的取值范围;

(Ⅲ)当m<0时,试判断函数gx)=-其中f′(x)是fx)的导函数)是否存在零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年交警统计了某路段过往车辆的车速大小与发生交通事故的次数,得到如表所示的数据:

车速xkm/h

60

70

80

90

100

事故次数y

1

3

6

9

11

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,求出y关于x的线性回归方程=x+

(3)根据(2)所得速度与事故发生次数的规律,试说明交管部门可采取什么措施以减少事故的发生.

附:==-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,函数,其中为自然对数的底数:

(1)如果函数为偶函数,求实数的值,并求此时函数的最小值;

(2)对满足,且的任意实数,证明函数的图像经过唯一的定点;

(3)如果关于的方程有且只有一个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力为视力正常, 为视力低下,其中为轻度, 为中度, 为重度.统计检测结果后得到如图所示的柱状图.

(1)求该校高一年级轻度近视患病率;

(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?

(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,在椭圆上.

(1)求椭圆的标准方程;

(2)已知动直线(斜率存在)与椭圆相交于点两点,且的面积,若为线段的中点.点在轴上投影为,问:在轴上是否存在两个定点,使得为定值,若存在求出的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆,过圆心的直线l与抛物线和圆分别交于P,Q,M,N,则的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,当,且时,有成立.

1)判断上的单调性,并给予证明;

2)若对任意的以及任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案