精英家教网 > 高中数学 > 题目详情

【题目】三棱锥P ABC中,PA⊥平面ABC,Q是BC边上的一个动点,且直线PQ与面ABC所成角的最大值为则该三棱锥外接球的表面积为(  )

A. B. C. D.

【答案】C

【解析】

根据题意画出图形,结合图形找出△ABC的外接圆圆心与三棱锥P﹣ABC外接球的球心,

求出外接球的半径,再计算它的表面积.

三棱锥P﹣ABC中,PA⊥平面ABC,直线PQ与平面ABC所成角为θ,

如图所示;则sinθ==,且sinθ的最大值是

(PQ)min=2AQ的最小值是,即ABC的距离为

AQBC,AB=2,在RtABQ中可得,即可得BC=6;

取△ABC的外接圆圆心为O′,作OO′PA,

=2r,解得r=2

O′A=2

HPA的中点,∴OH=O′A=2,PH=

由勾股定理得OP=R==

∴三棱锥P﹣ABC的外接球的表面积是

S=4πR2=4×=57π.

故答案为:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有极值.

(1)求的取值范围;

(2)若处取得极值,且当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|(x﹣m+2)(x﹣m﹣2)≤0,x∈R,m∈R}.
(1)若A∩B={x|0≤x≤3},求实数m的值;
(2)若ARB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为,点在椭圆上,为坐标原点,且,则椭圆的离心率的取值范围为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某建筑工地搭建的脚手架局部类似于一个 的长方体框架,一个建筑工人欲从处沿脚手架攀登至 处,则其最近的行走路线中不连续向上攀登的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+ )(ω>0),将函数y=f(x)的图象向右平移 个单位长度后,所得图象与原函数图象重合ω最小值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P ABCD中,E是棱PC上一点,且2,底面ABCD是边长为2的正方形,△PAD为正三角形,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l,且平面PAD⊥平面ABCD.

(1)求证:l∥EF;

(2)求四棱锥P-ABEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E为线段BS上的一个动点.

(1)证明:DE和SC不可能垂直;
(2)当点E为线段BS的三等分点(靠近B)时,求二面角S﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的S为(  )

A.2
B.
C.-
D.-3

查看答案和解析>>

同步练习册答案