精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2$\sqrt{3}$,且AC,BD交于点O,E是PB上任意一点.
(1)求证:AC⊥DE
(2)已知二面角A-PB-D的余弦值为$\frac{\sqrt{15}}{5}$,若E为PB的中点,求EC与平面PAB所成角的正弦值.

分析 (1)推导出DP⊥AC,从而BD⊥AC,进而AC⊥平面PBD,由此能证明AC⊥DE.
(2)连接OE,分别以OA,OB,OE所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出EC与平面PAB所成角θ的正弦值.

解答 (1)证明:因为DP⊥平面ABCD,所以DP⊥AC,
因为四边形ABCD为菱形,所以BD⊥AC,
又BD∩PD=D,∴AC⊥平面PBD,
因为DE?平面PBD,∴AC⊥DE.
(2)解:连接OE,在△PBD中,EO∥PD,
所以EO⊥平面ABCD,分别以OA,OB,OE所在直线为x轴,y轴,z轴,
建立如图所示的空间直角坐标系,
设PD=t,则A(1,0,0),B(0,$\sqrt{3}$,0),C(-1,0,0),
E(0,0,$\frac{t}{2}$),P(0,-$\sqrt{3}$,t),
设平面PAB的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{-x+\sqrt{3}y=0}\\{-x-\sqrt{3}y+tz=0}\end{array}\right.$,令y=1,得$\overrightarrow{n}$=($\sqrt{3}$,1,$\frac{2\sqrt{3}}{t}$),
平面PBD的法向量$\overrightarrow{m}$=(1,0,0),
因为二面角A-PB-D的余弦值为$\frac{\sqrt{15}}{5}$,
所以|cos<$\overrightarrow{m}$,$\overrightarrow{n}$>|=$\frac{\sqrt{3}}{\sqrt{4+\frac{12}{{t}^{2}}}}$=$\frac{\sqrt{15}}{5}$,
所以t=2$\sqrt{3}$或t=-2($\sqrt{3}$舍)
P(0,-$\sqrt{3}$,2$\sqrt{3}$),E(0,0,1),$\overrightarrow{n}$=($\sqrt{3}$,1,1),
$\overrightarrow{EC}$=(-1,0,-$\sqrt{3}$)
∴sinθ=|$\frac{-\sqrt{3}-\sqrt{3}}{2\sqrt{5}}$|=$\frac{\sqrt{15}}{5}$,
∴EC与平面PAB所成角θ的正弦值为$\frac{\sqrt{15}}{5}$.

点评 本题考查线线垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若集合A={x|x2-mx+3=0,x∈R},B={x|x2-x+n=0,x∈R},且A∪B={0,1,3},则实数m,n的值分别是m=4,n=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的导数
(1)y=x3+ln(1+x)
(2)y=$\frac{sin2x}{x-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已经集合A={x|(8x-1)(x-1)≤0};集合C={x|a<x<2a+5}
(1)若${(\frac{1}{4})^t}∈A$,求实数t的取值集合B;
(2)在(1)的条件下,若(A∪B)⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知lg2=a,lg3=b,则lg$\frac{3}{2}$=b-a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{3}$x3+ax2-bx (a,b∈R).若y=f(x)图象上的点(1,-$\frac{11}{3}$)处的切线斜率为-4.
(1)求a、b的值;
(2)求y=f(x)的极大值;
(3)对?x∈[-2,3],都有f(x)-k<0,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知变量x,y满足$\left\{\begin{array}{l}{x≥y}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则z=2x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3-3x2-9x+11
(Ⅰ)求函数f(x)的递减区间.
(Ⅱ)讨论函数f(x)的极值情况,如有,求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且椭圆C上的点到椭圆右焦点F的最小距离为$\sqrt{2}$-1.
(1)求椭圆C的方程;
(2)过点F且不与坐标轴平行的直线l与椭圆C交于A,B两点,线段AB的中点为M,O为坐标原点,直线OA,OM,OB的斜率为kOA,kOM,kOB,若kOA,-kOM,kOB成等差数列,求直线l的方程.

查看答案和解析>>

同步练习册答案