精英家教网 > 高中数学 > 题目详情
16.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为3.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为$\frac{2}{3}$,则抛物线C2的方程为(  )
A.x2=33yB.x2=33yC.x2=8yD.x2=16y

分析 由题意可知:双曲线渐近线为bx±ay=0,e=$\frac{c}{a}$=3,则c=3a,焦点(0,$\frac{p}{2}$),到bx±ay=0的距离d=$\frac{\frac{ap}{2}}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ap}{2c}$=$\frac{2}{3}$,求得p,即可求得抛物线C2的方程.

解答 解:由题意可得双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)渐近线为y=±$\frac{b}{a}$x,
化为一般式可得bx±ay=0,离心率e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}$=3,
解得:b=2$\sqrt{2}$a,c=3a,
又抛物线C2:x2=2py(p>0)的焦点为(0,$\frac{p}{2}$),
故焦点到bx±ay=0的距离d=$\frac{\frac{ap}{2}}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ap}{2c}$=$\frac{2}{3}$,
∴p=$\frac{4c}{3a}$=$\frac{4×3a}{3a}$=4,
∴抛物线C2的方程为:x2=8y
故选C.

点评 本题考查椭圆及双曲线的简单几何性质,考查点到直线的距离公式,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某同学用“五点法”画函数$f(x)=2sin(2x-\frac{π}{3})+1$在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象时,列表并填入了部分数据,如表:
2x-$\frac{π}{3}$-$\frac{4}{3}$π-$\frac{π}{2}$0$\frac{π}{2}$$\frac{2}{3}$π
x-$\frac{π}{2}$-$\frac{π}{3}$-$\frac{π}{12}$$\frac{π}{6}$$\frac{5π}{12}$$\frac{π}{2}$
f(x)
(1)请将上表数据补充完整,并在给出的直角坐标系中,画出f(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的图象;
(2)求f(x)的最小值及取最小值时x的集合;
(3)求f(x)在$x∈[0,\frac{π}{2}]$时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设x∈R,则“1<x<3”是“|x-2|<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数y=f(x),x∈D,对任意的x1∈D,总存在x2∈D,使得f(x1)•f(x2)=1,则称函数f(x)具有性质M.
(1)判断函数y=2x和y=log2x是否具有性质M,说明理由;
(2)若函数y=log8(x+2),x∈[0,t]具有性质M,求t的值;
(3)若函数y=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$(a≠0)在实数集R上具有性质M,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a、b、c∈R,a>b>c,a+b+c=0,若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤4}\\{bx+ay+c≥0}\end{array}\right.$,则目标函数z=2x+y(  )
A.有最大值,无最小值B.无最大值,有最小值
C.有最大值,有最小值D.无最大值,无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知随机变量ξ服从正态分布N(2,σ2),且“P(ξ>a)=P(ξ<a)”,则关于x的二项式(x2-$\frac{a}{x}$)3的展开式的常数项为(  )
A.2B.-2C.12D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用数学归纳法证明1+2+22+…+2n+1=2n+2-1(n∈N*)的过程中,在验证n=1时,左端计算所得的项为(  )
A.1B.1+2C.1+2+22D.1+2+22+23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3})+cos2x+a$,x∈R.
(1)求函数f(x)的最小正周期;
(2)当$x∈[-\frac{π}{4},\frac{π}{4}]$时,恒有f(x)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{2sin(\frac{π}{12}x)-1,x>1}\end{array}\right.$,则f[f(2)]=(  )
A.-2B.-1C.2${\;}^{\sqrt{3}-1}$-2D.0

查看答案和解析>>

同步练习册答案