【题目】为了得到函数y=cos(x+ )的图象,只需把余弦曲线y=cosx上的所有的点( )
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度
科目:高中数学 来源: 题型:
【题目】已知函数 ,对于 上的任意x1 , x2 , 有如下条件:
① ;②|x1|>x2;③x1>|x2|;④ .
其中能使g(x1)>g(x2)恒成立的条件序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系表:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 5 | 7.5 | 5 | 2.5 | 5 | 7.5 | 5 | 2.5 | 5 |
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题P:不等式a2﹣4a+3<0的解集;命题Q:使(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立的实数a,若P∨Q是真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为 .
(Ⅰ)求 的值;
(Ⅱ)将函数y=f(x)的图象向右平移 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆 与直线 相切.
(1)求圆 的方程;
(2)过点 的直线 截圆所得弦长为 ,求直线 的方程;
(3)设圆 与 轴的负半轴的交点为 ,过点 作两条斜率分别为 的直线交圆 于 两点,且 ,证明:直线 恒过一个定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 , ,函数 , .
(1)若 的最小值为-1,求实数 的值;
(2)是否存在实数 ,使函数 , 有四个不同的零点?若存在,求出 的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O:x2+y2=2,直线l:y=kx﹣2.
(1)若直线l与圆O交于不同的两点A,B,且 ,求k的值;
(2)若 ,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点分别为C,D,求证:直线CD过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com