【题目】在一个风雨交加的夜里,某水库闸房(设为A)到某指挥部(设为B)的电话线路有一处发生了故障.这是一条长的线路,想要尽快地查出故障所在.如果沿着线路一小段小段地查找,困难很多,每查一小段需要很长时间.
(1)维修线路的工人师傅随身带着话机,他应怎样工作,才能每查一次,就把待查的线路长度缩减一半?
(2)要把故障可能发生的范围缩小到,最多要查多少次?
科目:高中数学 来源: 题型:
【题目】某地区上年度电价为元/kWh,年用电量为kWh.本年度计划将电价降低到0.55元/ kWh到0.75元/ kWh之间,而用户期望电价为0.40元/ kWh.经测算,下调电价后新增用电量与实际电价与用户的期望电价的差成反比(比例系数为),该地区电力的成本价为0.30元/ kWh.
(1)写出本年度电价下调后,电力部门的收益与实际电价之间的函数关系式;
(2)设=,当电价最低定为多少时仍可保证电力部门的收益比上一年至少增长20%?(注:收益=实际电量×(实际电价-成本价))
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高三年级在一次理科综合检测中统计了部分“住校生”和“非住校生”共20人的物理、化学的成绩制成下列散点图(物理成绩用表示,化学成绩用表示)(图1)和生物成绩的茎叶图(图2).
(图1)
住校生 非住校生
2 6
9 8 5 4 4 3 1 7 4 5 7 7 9 9
6 5 8 2 2 5 7
(图2)
(1)若物理成绩高于90分,我们视为“优秀”,那么以这20人为样本,从物理成绩优秀的人中随机抽取2人,求至少有1人是住校生的概率;
(2)若化学成绩高于80分,我们视为“优秀”,根据图1完成如下列联表,并判断是否有95%的把握认为优秀率与住校有关;
住校 | 非住校 | |
优 秀 | ||
非优秀 |
附:(,其中)
(3)若生物成绩高于75分,我们视为“良好”,将频率视为概率,若从全年级学生中任选3人,记3人中生物成绩为“良好”的学生人数为随机变量,求出的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,直线的参数方程为: (为参数)
(1)求圆和直线的极坐标方程;
(2)点 的极坐标为,直线与圆相较于,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)时间经过(时),时针、分针各转了多少度?各等于多少弧度?
(2)有人说,钟的时针和分针一天内会重合24次。你认为这种说法是否正确?请说明理由.
(提示:从午夜零时算起,假设分针走了t min会与时针重合,一天内分针和时针会重合n次,建立t关于n的函数解析式,并画出其图象,然后求出每次重合的时间)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在中,,,与相交于点M.设,.
(1)试用向量表示.
(2)在线段上取点E,在线段取点F,使过点M.设,,其中当与重合时,,,此时;当与重合时,,,此时.能否由此得出般结论:不论在线段上如何变动,等式恒成立,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣3|+x+1.
(1)求函数f(x)的最小值;
(2)当x≥1时,关于x的不等式f(2x)<4x+2a恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com