精英家教网 > 高中数学 > 题目详情

如果函数(a0)x=±1时有极值,极大值为4,极小值为0,试求abc的值.

答案:3,5,2
解析:

,令,即

∵x=±1是极值点,

可疑点为x=0x=±1

∵a0

x变化时,y的变化情况如下表:

由上表可知,当x=1时,f(x)有极大值;当x=1时,f(x)有极小值,


提示:

解析:本题要求参数abc的值,可通过求导来确定可疑点,再利用可疑点建立方程组,从而解出abc的值.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)
在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值.
(2)设常数c∈[1,4],求函数f(x)=x+
c
x
(1≤x≤2)
的最大值和最小值;
(3)当n是正整数时,研究函数g(x)=xn+
c
xn
(c>0)
的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
上是减函数,在
a
,+∞)上是增函数.
(1)如果函数y=x+
2b
x
在(0,4)上是减函数,在(4,+∞)上是增函数,求实常数b的值;
(2)设常数c∈1,4,求函数f(x)=x+
c
x
(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
(x>0)有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
b2
x
(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+
c
x2
(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+
a
x
和y=x2+
a
x2
(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=(x2+
1
x
)2
+(
1
x2
+x)2
在区间[
1
2
,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

科目:高中数学 来源: 题型:013

如果函数(a为常数)在区间(0)(2,+∞)内单调递增,且在区间(02)内单调递减,则实数a的值为

[  ]

A1

B2

C.-6

D.-12

查看答案和解析>>

同步练习册答案