精英家教网 > 高中数学 > 题目详情
7.求函数f(x)=lgcosx+$\sqrt{25-{x}^{2}}$的定义域.

分析 根据题目中使函数解析式有意义的原则,构造不等式组,解得函数的定义域.

解答 解:由$\left\{\begin{array}{l}25-{x}^{2}≥0\\ cosx>0\end{array}\right.$得$\left\{\begin{array}{l}-5≤x≤5\\ 2kπ-\frac{π}{2}<x<2kπ+\frac{π}{2},k∈Z\end{array}\right.$,
得函数的定义域为:[-5,-$\frac{3π}{2}$)∪(-$\frac{π}{2}$,$\frac{π}{2}$)∪($\frac{3π}{2}$,5],

点评 本题属于以函数的定义域为平台,求集合的交集的基础题,也是高考常会考的题型,是个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.△ABC中,角A,B,C所对的边分别为a,b,c,其面积S=a2-(b-c)2,则tan$\frac{A}{2}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.点(1,2)关于点(2,3)的对称点的坐标为(3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数y=$\sqrt{3}$cos($\frac{3π}{2}$+2x)+cos2x-sin2x,当x取何值时,y取得最大值和函数的对称中心?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|ex-e2x|,方程f2(x)+af(x)+a-1=0有四个不同的实数根,则a的取值范围为(  )
A.(-∞,-$\frac{{e}^{2}+1}{e}$)B.(-∞,e2C.(-2e2,1-e2D.(1-e2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知7.2x=3,0.8y=3,求证:$\frac{1}{x}$-$\frac{1}{y}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=($\frac{1}{3}$)${\;}^{\frac{1}{2}}$,c=logπ($\root{3}{e}$),则a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若f(x)+2f($\frac{1}{x}$)=3x,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点,
(1)若点A的横坐标是$\frac{3}{5}$,点B的纵坐标是$\frac{12}{13}$,求sin(α+β)的值;
(2)若|AB|=$\frac{3}{2}$,求cos(β-α)的值;
(3)已知点C(-1,3 ),求函数f(α)=$\overrightarrow{OA}•\overrightarrow{OC}$的值域.

查看答案和解析>>

同步练习册答案