精英家教网 > 高中数学 > 题目详情
在(
x
2
-
1
3x
8的二项展开式中,常数项等于(  )
A、
3
2
B、-7
C、7
D、-
3
2
分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r代入通项求出常数项.
解答:解::(
x
2
-
1
3x
8的二项展开式的通项公式为
Tr+1=c8r
x
2
8-r•(-x-
1
3
r
=
(-1)r
c
r
8
28-r
•x8-
4
3
r,
令8-
4
3
r=0得r=6,所以r=6时,得二项展开式的常数项为T7=
(-1)6
c
6
8
28-6
=7.
故选C.
点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(
x
2
-
1
3x
)8
的展开式中的常数项是(  )
A、7B、-7C、28D、-28

查看答案和解析>>

科目:高中数学 来源: 题型:

(
x
2
-
1
3x
)8
的展开式中常数项是第
 
项.

查看答案和解析>>

科目:高中数学 来源: 题型:

(
x
2
-
1
3x
)
8
的展开式中常数项是
7
7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在(
x
2
-
1
3x
8的二项展开式中,常数项等于(  )
A.
3
2
B.-7C.7D.-
3
2

查看答案和解析>>

同步练习册答案